16.已知f(α)=$\frac{sin(2π-α)cos(π+α)cos(\frac{π}{2}+α)cos(\frac{11π}{2}-α)}{cos(π-α)sin(3π-α)sin(-π-α)sin(\frac{9π}{2}+α)}$.
(1)利用誘導(dǎo)公式化簡(jiǎn)f(α);
(2)設(shè)f(α)=-2,計(jì)算:①$\frac{sinα+2cosα}{5cosα-2sinα}$;②sinαcosα.

分析 (1)利用誘導(dǎo)公式化簡(jiǎn)f(α)即可.
(2)求出正切函數(shù)值,然后化簡(jiǎn)所求的表達(dá)式為正切函數(shù)的形式,然后求解即可.

解答 解:(1)f(α)=$\frac{sin(2π-α)cos(π+α)cos(\frac{π}{2}+α)cos(\frac{11π}{2}-α)}{cos(π-α)sin(3π-α)sin(-π-α)sin(\frac{9π}{2}+α)}$
=$\frac{sinαcosαsinαsinα}{-cosαsinαsinαcosα}$
=-tanα.
(2)f(α)=-2,可得tanα=2
①$\frac{sinα+2cosα}{5cosα-2sinα}$
=$\frac{tanα+2}{5-2tanα}$=4;
②sinαcosα=$\frac{tanα}{ta{n}^{2}α+1}$=$\frac{2}{5}$.

點(diǎn)評(píng) 本題考查三角函數(shù)化簡(jiǎn)求值,同角三角函數(shù)基本關(guān)系式的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知兩組相關(guān)數(shù)據(jù)如表,其線性回歸方程為$\stackrel{∧}{y}$=x+$\frac{6}{5}$,則表中缺失的數(shù)據(jù)m=11.
 x 5 7 9 11 13
 y 6 8 m 12 14

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知f(x)為定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=4x+x-$\frac{1}{x}$.
(1)求f(-1)的值;
(2)求f(x)的解析式;
(3)若函數(shù)g(x)=f(x)+a在區(qū)間(1,2)上有零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖所示,在直角梯形ABCD中,AB∥CD,AB⊥AD,AB=AD=$\frac{1}{2}$CD=1,現(xiàn)以AD為一邊向梯形外作正方形ADEF,然后沿邊AD將正方形ADEF翻折,使平面ADEF與平面ABCD垂直,M為ED的中點(diǎn).
(1)求證:AM∥平面BEC;
(2)若點(diǎn)P為線段BC的中點(diǎn),求直線PE與平面BDE所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知函數(shù)f(x)=-tan(2x-$\frac{3π}{4}$),則(  )
A.f(x)在($\frac{kπ}{2}$+$\frac{π}{8}$,$\frac{kπ}{2}$+$\frac{5π}{8}$)(k∈Z)上單調(diào)遞減
B.f(x)在($\frac{kπ}{2}$+$\frac{π}{8}$,$\frac{kπ}{2}$+$\frac{5π}{8}$)(k∈Z)上單調(diào)遞增
C.f(x)在(kπ+$\frac{π}{8}$,kπ+$\frac{5π}{8}$)(k∈Z)上單調(diào)遞減
D.f(x)在[kπ+$\frac{π}{8}$,kπ+$\frac{5π}{8}$](k∈Z)上單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.在區(qū)間(-$\frac{3π}{2}$,$\frac{3π}{2}$)內(nèi),函數(shù)y=tanx與函數(shù)y=sinx圖象交點(diǎn)的個(gè)數(shù)為( 。
A.5B.4C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一個(gè)焦點(diǎn)為F(2,0),且雙曲線的漸近線與圓(x-2)2+y2=3相切,則雙曲線的方程為( 。
A.x2-$\frac{{y}^{2}}{3}$=1B.$\frac{{x}^{2}}{3}$-y2=1C.$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{2}$=1D.$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{3}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知:a>0,b>0,c>0,函數(shù)f(x)=|x+a|+|x-b|+c的最小值為5.
(1)求a+b+c的值;
(2)求$\frac{1}{3}$a2+$\frac{1}{4}$b2+$\frac{1}{5}$c2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.在△ABC中,a、b、c是角A、B、C的對(duì)邊,且c=2,C=60°.
(1)求$\frac{a+b}{sinA+sinB}$的值;
(2)若a+b=ab,求△ABC的面積S.

查看答案和解析>>

同步練習(xí)冊(cè)答案