3.已知橢圓C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的焦距為4,左、右焦點(diǎn)分別為F1、F2,且C1與拋物線C2:y2=x的交點(diǎn)所在的直線經(jīng)過F2
(Ⅰ)求橢圓C1的方程;
(Ⅱ)過F1的直線l與C1交于A,B兩點(diǎn),與拋物線C2無公共點(diǎn),求△ABF2的面積的取值范圍.

分析 (Ⅰ)依題意可得F1F2的坐標(biāo),由此可得橢圓C1與拋物線C2的一個交點(diǎn)為$P({2,\sqrt{2}})$,由橢圓的定義可得a的值,又由a2=b2+c2,解得b的值,將其代入橢圓的方程即可得答案;
(Ⅱ)依題意,直線l:x=ty-2,聯(lián)立直線與拋物線的方程整理可得y2-ty+2=0,聯(lián)立直線與橢圓的方程可得(t2+2)y2-4ty-4=0,進(jìn)而設(shè)A(x1,y1),B(x2,y2),由根與系數(shù)的關(guān)系分析可得|AB|的長度以及F2到直線l距離d,進(jìn)而可以表示△ABF2的面積,借助換元法分析可得答案.

解答 解:(Ⅰ)依題意得2c=4,則F1(2,0)F2(-2,0);
所以橢圓C1與拋物線C2的一個交點(diǎn)為$P({2,\sqrt{2}})$,
于是2a=|PF1|$+|{P{F_2}}|=4\sqrt{2}$,從而$a=2\sqrt{2}$.
又a2=b2+c2,解得b=2
所以橢圓C1的方程為$\frac{x^2}{8}+\frac{y^2}{4}=1$.
(Ⅱ)依題意,直線l的斜率不為0,設(shè)直線l:x=ty-2,
由$\left\{\begin{array}{l}x=ty-2\\{y^2}=x\end{array}\right.$,消去x整理得y2-ty+2=0,由△=(-t)2-8<0得t2<8.
由$\left\{\begin{array}{l}x=ty-2\\{x^2}+2{y^2}=8\end{array}\right.$,消去x整理得(t2+2)y2-4ty-4=0,
設(shè)A(x1,y1),B(x2,y2),則${y_1}+{y_2}=\frac{4t}{{{t^2}+2}}$,${y_1}{y_2}=-\frac{4}{{{t^2}+2}}$,
所以$|{AB}|=\sqrt{1+{t^2}}|{{y_1}-{y_2}}|$=$\sqrt{1+{t^2}}\sqrt{{{({{y_1}+{y_2}})}^2}-4{y_1}{y_2}}$=$\frac{{4\sqrt{2}({{t^2}+1})}}{{{t^2}+2}}$,F(xiàn)2到直線l距離$d=\frac{4}{{\sqrt{{t^2}+1}}}$,
故${S_{AB{F_2}}}=\frac{1}{2}|{AB}|d$=$\frac{1}{2}•\frac{{4\sqrt{2}({{t^2}+1})}}{{{t^2}+2}}•\frac{4}{{\sqrt{{t^2}+1}}}$=$\frac{{8\sqrt{2}\sqrt{{t^2}+1}}}{{{t^2}+2}}$,
令$\sqrt{{t^2}+1}=s∈[{1,3})$,則${S_{AB{F_2}}}=\frac{{8\sqrt{2}\sqrt{{t^2}+1}}}{{{t^2}+2}}$=$\frac{{8\sqrt{2}s}}{{{s^2}+1}}=\frac{{8\sqrt{2}}}{{s+\frac{1}{s}}}$$∈({\frac{{12\sqrt{2}}}{5},4\sqrt{2}}]$,
所以三邊形ABF2的面積的取值范圍為$({\frac{{12\sqrt{2}}}{5},4\sqrt{2}}]$.

點(diǎn)評 本題考查直線與橢圓、拋物線的位置關(guān)系,涉及橢圓的幾何性質(zhì),關(guān)鍵是正確求出橢圓的標(biāo)準(zhǔn)方程.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知$a=2ln\frac{2018}{2017}-{({\frac{2018}{2017}})^2},b=2ln\frac{2017}{2016}-{({\frac{2017}{2016}})^2}$,$c=2ln\frac{2016}{2015}-{({\frac{2016}{2015}})^2}$,則( 。
A.a>b>cB.a>c>bC.c>a>bD.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)(1+i)(x+yi)=2,其中i為虛數(shù)單位,x,y是實(shí)數(shù),則|2x+yi|=( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.某沿海四個城市A、B、C、D的位置如圖所示,其中∠ABC=60°,∠BCD=135°,AB=80nmile,BC=40+30$\sqrt{3}$nmile,CD=250$\sqrt{6}$nmile,D位于A的北偏東75°方向.現(xiàn)在有一艘輪船從A出發(fā)以50nmile/h的速度向D直線航行,60min后,輪船由于天氣原因收到指令改向城市C直線航行,收到指令時城市C對于輪船的方位角是南偏西θ度,則sinθ=$\frac{{\sqrt{6}-\sqrt{2}}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)$f(x)=x+\frac{1}{e^x}$,若對任意x∈R,f(x)>ax恒成立,則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,1-e)B.(1-e,1]C.[1,e-1)D.(e-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知$\overrightarrow{a}$為單位向量,$\overrightarrow$=(0,2),且$\overrightarrow{a}$$•\overrightarrow$=1,則向量$\overrightarrow{a}$與$\overrightarrow$的夾角為( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=x2lnax(a>0).
(Ⅰ)求函數(shù)y=f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)a=e時,證明:t>0時,存在唯一的s,使ts2+t2=f(s).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某單位共有10名員工,他們某年的收入如表:
員工編號12345678910
年薪(萬元)44.5656.57.588.5951
(1)求該單位員工當(dāng)年年薪的平均值和中位數(shù);
(2)從該單位中任取2人,此2人中年薪收入高于7萬的人數(shù)記為ξ,求ξ的分布列和期望;
(3)已知員工年薪收入與工作年限成正相關(guān)關(guān)系,某員工工作第一年至第四年的年薪分別為4萬元,5.5萬元,6萬元,8.5萬元,預(yù)測該員工第五年的年薪為多少?
附:線性回歸方程$\widehaty=\widehatbx+\widehata$中系數(shù)計(jì)算公式分別為:$\widehatb=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{7}{5}=1.4$,$\widehata=\overline y-\widehatb\overline x$,其中$\overline x,\overline y$為樣本均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)f(x)=alnx+x2+(a-6)x在(0,3)上不是單調(diào)函數(shù),則實(shí)數(shù)a的取值范圍是(0,2).

查看答案和解析>>

同步練習(xí)冊答案