18.若集合A={x|1≤2x≤8},B={x|(x-2)(x+1)>0},則A∩B=(  )
A.(2,3]B.[2,3]C.(-∞,0)∪(0,2]D.(-∞,-1)∪(0,3]

分析 解不等式求出集合A、B,根據(jù)交集的定義寫出A∩B.

解答 解:集合A={x|1≤2x≤8}={x|0≤x≤3},
B={x|(x-2)(x+1)>0}={x|x<-1或x>2},
則A∩B={x|2<x≤3}=(2,3].
故選:A.

點評 本題考查了解不等式與交集的運(yùn)算問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=lnx-$\frac{1}{x}$,g(x)=ax+b.
(1)若a=2,F(xiàn)(x)=f(x)-g(x),求F(x)的單調(diào)區(qū)間;
(2)若函數(shù)g(x)=ax+b是函數(shù)f(x)=lnx-$\frac{1}{x}$圖象的切線,求a+b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)Sn為等差數(shù)列{an}的前n項和,若$\frac{{S}_{1}}{{S}_{4}}$=$\frac{1}{10}$,則$\frac{{S}_{3}}{{S}_{5}}$=(  )
A.$\frac{2}{5}$B.$\frac{3}{5}$C.$\frac{3}{7}$D.$\frac{4}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)f(x)=3sin(2x-$\frac{π}{3}$)的圖象可以由y=3sin2x的圖象( 。
A.向右平移$\frac{π}{3}$個單位長度得到B.向左平移$\frac{π}{3}$個單位長度得到
C.向右平移$\frac{π}{6}$個單位長度得到D.向左平移$\frac{π}{6}$個單位長度得到

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,三角形ABC和梯形ACEF所在的平面互相垂直,AB⊥BC,AF⊥AC,AF${\;}_{=}^{∥}$2CE,G是線段BF上一點,AB=AF=BC
(Ⅰ)若EG∥平面ABC,求$\frac{BG}{BF}$的值;
(Ⅱ)是否在線段BF上存在點G滿足BF⊥平面AEG?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下面四個命題中的真命題是(  )
A.命題“?x≥2,均有x2-3x+2≥0”的否定是:“?x<2,使得x2-3x+2<0”
B.命題“若x2=1,則x=1”的否命題為“若x2=1,則x≠1”
C.采用系統(tǒng)抽樣法從某班按學(xué)號抽取5名同學(xué)參加活動,學(xué)號為5、16、27、38、49的同學(xué)均被選出,則該班人數(shù)可能為60
D.在某項測量中,測量結(jié)果X服從正態(tài)分布N(1,σ2)(σ>0),若X在(0,1)內(nèi)取值的概率為0.3,則X在(0,2)內(nèi)取值的概率為0.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.私家車的尾氣排放是造成霧霾天氣的重要因素之一,因此在生活中我們應(yīng)該提倡低碳生活,少開私家車,盡量選擇綠色出行方式,為預(yù)防霧霾出一份力.為此,很多城市實施了機(jī)動車尾號限行,我市某報社為了解市區(qū)公眾對“車輛限行”的態(tài)度,隨機(jī)抽查了50人,將調(diào)查情況進(jìn)行整理后制成如表:
年齡(歲)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75]
頻數(shù)510151055
贊成人數(shù)469634
(Ⅰ)完成被調(diào)查人員的頻率分布直方圖;
(Ⅱ)若從年齡在[55,65),的被調(diào)查者中各隨機(jī)選取2人進(jìn)行追蹤調(diào)查,記選中的2人中贊成“車輛限行”的人數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)的導(dǎo)函數(shù)f′(x)的圖象如圖所示,那么下面說法正確的是( 。
A.y=f(x)在(-∞,-0.7)上單調(diào)遞增B.y=f(x)在(-2,2)上單調(diào)遞增
C.在x=1時,函數(shù)y=f(x)取得極值D.y=f(x)在x=0處切線的斜率小于零.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知$f(x)=\left\{\begin{array}{l}-2,0<x<1\\ 1,x≥1\end{array}\right.$,則不等式${log_2}x-({{{log}_{\frac{1}{4}}}4x-1})f({{{log}_3}x+1})≤5$的解集為($\frac{1}{3}$,4].

查看答案和解析>>

同步練習(xí)冊答案