分析 利用同角三角函數(shù)的基本關(guān)系求得tanα的值,再利用兩角差的正切公式求得tanβ=tan[(α+β)-α]的值.
解答 解:∵sinα=$\frac{\sqrt{3}}{2}$,α是第二象限角,∴cosα=-$\sqrt{{1-sin}^{2}α}$=-$\frac{1}{2}$,
∴tanα=$\frac{sinα}{cosα}$=-$\sqrt{3}$,又tan(α+β)=1,
則tanβ=tan[(α+β)-α]=$\frac{tan(α+β)-tanα}{1+tan(α+β)tanα}$=$\frac{1+\sqrt{3}}{1-\sqrt{3}}$=-2-$\sqrt{3}$,
故答案為:-2-$\sqrt{3}$.
點評 本題主要考查同角三角函數(shù)的基本關(guān)系,兩角差的正切公式的應(yīng)用,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2,3) | B. | (-2,3) | C. | (0,2) | D. | (-2,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,3] | B. | [-2$\sqrt{2}$,3] | C. | [-2$\sqrt{2}$,2$\sqrt{2}$] | D. | [-3,3] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {-2,1,2} | B. | {-2,2} | C. | {1,2} | D. | {2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -10 | B. | -11 | C. | -12 | D. | -16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com