7.底面是邊長為1的正方形,側(cè)面是等邊三角形的四棱錐的外接球的體積為(  )
A.$\frac{\sqrt{2}π}{3}$B.$\frac{\sqrt{3}π}{3}$C.$\frac{\sqrt{3}π}{2}$D.$\frac{2\sqrt{2}π}{3}$

分析 畫出圖形,求出外接球的半徑即可求出結(jié)果.

解答 解:底面ABCD外接圓的半徑是$\frac{\sqrt{2}}{2}$,即AO=$\frac{\sqrt{2}}{2}$.
則PO=$\sqrt{1-\frac{1}{2}}$=$\frac{\sqrt{2}}{2}$,
∴四棱錐的外接球的半徑為:$\frac{\sqrt{2}}{2}$,
∴四棱錐的外接球的體積為$\frac{4}{3}π•(\frac{\sqrt{2}}{2})^{3}$=$\frac{\sqrt{2}π}{3}$.
故選:A.

點評 本題考查幾何體的外接球的體積的求法,考查空間想象能力以及計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)i為虛數(shù)單位,復(fù)數(shù)z滿足z(2-i)=i3,則復(fù)數(shù)z的虛部為$-\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知等比數(shù)列{an}的前n項和為Sn,且$6{S_n}={3^{n+1}}+a$(a∈N+).
(Ⅰ)求a的值及數(shù)列{an}的通項公式;
(Ⅱ)設(shè)${b_n}=\frac{{{{(-1)}^{n-1}}(2{n^2}+2n+1)}}{{{{({{log}_3}{a_n}+2)}^2}{{({{log}_3}{a_n}+1)}^2}}}$,求{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.閱讀下列程序框圖,輸出的結(jié)果s的值為( 。
A.$\frac{{\sqrt{3}}}{2}$B.0C.$-\frac{{\sqrt{3}}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知a>0,b>0,$\frac{2}{a}+\frac{1}=\frac{1}{4}$,若不等式2a+b≥4m恒成立,則m的最大值為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.(1)計算:sin$\frac{25π}{6}$+cos$\frac{25π}{3}$+tan(-$\frac{25π}{4}$)
(2)化簡:$\frac{{sin(5π-α)cos(α+\frac{3}{2}π)cos(π+α)}}{{sin(α-\frac{3}{2}π)cos(α+\frac{π}{2})tan(α-3π)}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列說法正確的是(  )
A.三角形的內(nèi)角是第一象限角或第二象限角
B.第一象限的角是銳角
C.第二象限的角比第一象限的角大
D.角α是第四象限角,則$2kπ-\frac{π}{2}<α<2kπ(k∈z)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若復(fù)數(shù)z滿足$\frac{z+2i}{z}$=2+3i,其中i是虛數(shù)單位,則$\overline z$=( 。
A.$\frac{2}{5}$+$\frac{3}{5}$iB.$\frac{3}{5}$+$\frac{2}{5}$iC.$\frac{3}{5}$+$\frac{1}{5}$iD.$\frac{3}{5}$-$\frac{1}{5}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=ex+ax,g(x)=exlnx(e是自然對數(shù)的底數(shù)).
(1)若對于任意x∈R,f(x)>0恒成立,試確定負(fù)實數(shù)a的取值范圍;
(2)當(dāng)a=-1時,是否存在x0∈(0,+∞),使曲線C:y=g(x)-f(x)在點x=x0處的切線斜率與f(x)在R上的最小值相等?若存在,求符合條件的x0的個數(shù);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案