分析 求出拋物線的焦點坐標,設出直線方程,利用弦長公式,表示四邊形的面積,運用基本不等式求解即可.
解答 解:拋物線y2=4x,過焦點F(1,0),由題意,直線l1、l2的斜率都存在且不為0,
設直線l1的方向向量為(1,k)(k>0),則(1,k)也是直線l2的一個法向量,
所以直線l1的方程為y=k(x-1),…(2分)
直線l2的方程為y=-$\frac{1}{k}$(x-1),即x+ky-1=0. …(3分)
設A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4).
由$\left\{\begin{array}{l}{y=k(x-1)}\\{{y}^{2}=4x}\end{array}\right.$,得k2x2-(2k2+4)x+k2=0…(4分)
則x1+x2=$\frac{4+2{k}^{2}}{{k}^{2}}$,x1x2=1…(5分).
|AB|=$\sqrt{1+{k}^{2}}$|x2-x1|=$\sqrt{1+{k}^{2}}$•$\sqrt{(\frac{4+2{k}^{2}}{{k}^{2}})^{2}-4}$=$\frac{4+4{k}^{2}}{{k}^{2}}$.
同理可得:|CD|=4+4k2.
則四邊形ACBD面積為:$\frac{1}{2}|CD||AB|$=(2+2k2)•$\frac{4+4{k}^{2}}{{k}^{2}}$=8(k2+$\frac{1}{{k}^{2}}$+2)≥32.
當且僅當k=1時取等號.
故答案為:32.
點評 本題考查拋物線的簡單性質的應用,直線與拋物線的位置關系的應用,考查三角形面積的最小值的求法,解題時要認真審題,注意均值定理的合理運用.
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-1,1) | B. | (0,1) | C. | 空集 | D. | (0,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{16\sqrt{2}π}{3}$ | B. | 64$\sqrt{2}$π | C. | 32π | D. | 8π |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{3}{4}$ | B. | $\frac{3}{4}$ | C. | -$\frac{4}{3}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | -$\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 5 | C. | 4$\sqrt{2}$ | D. | 3+2$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com