3.已知向量$\overrightarrow a$,$\overrightarrow b$滿足$\overrightarrow a=(1,\sqrt{3})$,|$\overrightarrow b|=1$,且$\overrightarrow a+λ\overrightarrow b=\overrightarrow 0$(λ>0),則λ=2.

分析 根據(jù)條件即可求出${\overrightarrow{a}}^{2},{\overrightarrow}^{2}$的值,而由$\overrightarrow{a}+λ\overrightarrow=\overrightarrow{0}$可得到$\overrightarrow{a}=-λ\overrightarrow$,兩邊平方即可得到關(guān)于λ的方程,解出λ即可.

解答 解:${\overrightarrow{a}}^{2}=4,{\overrightarrow}^{2}=1$;
由$\overrightarrow{a}+λ\overrightarrow=\overrightarrow{0}$得,$\overrightarrow{a}=-λ\overrightarrow$;
∴${\overrightarrow{a}}^{2}={λ}^{2}{\overrightarrow}^{2}$;
∴4=λ2,且λ>0;
∴λ=2.
故答案為:2.

點(diǎn)評(píng) 考查向量坐標(biāo)的數(shù)量積運(yùn)算,數(shù)量積的計(jì)算公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知f'(x0)=a,則$\underset{lim}{n→∞}$$\frac{f({x}_{0}+△x)-f({x}_{0}-3△x)}{2△x}$的值為( 。
A.-2aB.2aC.aD.-a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知?jiǎng)訄AP過點(diǎn)A(-3,0),且與圓B:(x-3)2+y2=64相內(nèi)切,則動(dòng)圓P的圓心的軌跡方程為$\frac{{x}^{2}}{16}-\frac{{y}^{2}}{7}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.“a2>1”是“a3>1”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知sinx=$-\frac{4}{5}$,則sin(x+π)等于( 。
A.$\frac{3}{5}$B.$-\frac{3}{5}$C.$-\frac{4}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.“a>b”是“ac2>bc2”的( 。
A.必要不充分條件B.充分不必要條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在平面直角坐標(biāo)系中xOy中,點(diǎn)A,點(diǎn)B分別為x軸,y軸上的兩個(gè)動(dòng)點(diǎn),點(diǎn)F(1,0)為定點(diǎn),B為線段MA的中點(diǎn),且$\overrightarrow{BA}$⊥$\overrightarrow{BF}$.
(1)求動(dòng)點(diǎn)M的軌跡C的方程;
(2)設(shè)點(diǎn)P(-1,m),過點(diǎn)F的直線1交軌跡C于G、K兩點(diǎn),記PG,PF,PK的斜率分別為k1,k2,k3,求證:k1,k2,k3成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列{an}的前n項(xiàng)和Sn=3n2+10n,{bn}是等差數(shù)列,且an=bn+bn+1
(Ⅰ)求數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)令${c_n}=\frac{{{{({a_n}+1)}^{n+1}}}}{{{{({b_n}+2)}^n}}}$求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.過雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn)F(c,0),作圓x2+y2=$\frac{{a}^{2}}{4}$的切線,切點(diǎn)為E,延長(zhǎng)FE交雙曲線左支于點(diǎn)M,且E是MF的中點(diǎn),則雙曲線離心率為( 。
A.$\sqrt{10}$B.$\frac{\sqrt{10}}{2}$C.$\frac{\sqrt{10}}{5}$D.2$\sqrt{10}$

查看答案和解析>>

同步練習(xí)冊(cè)答案