13.已知橢圓W:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左右兩個焦點為F1,F(xiàn)2,且|F1F2|=2,橢圓上一動點P滿足|PF1|+|PF2|=2$\sqrt{3}$.
(Ⅰ)求橢圓W的標(biāo)準(zhǔn)方程及離心率;
(Ⅱ)如圖,過點F1作直線l1與橢圓W交于點A,C,過點F2作直線l2⊥l1,且l2與橢圓W交于點B,D,l1與l2交于點E,試求四邊形ABCD面積的最大值.

分析 (Ⅰ)由橢圓的定義及焦距|F1F2|=2c=2,求得a和c的值,則b2=a2-c2=2,即可求得橢圓的方程及離心率.
(Ⅱ)當(dāng)直線的斜率不存在時,由S=$\frac{1}{2}$丨AC丨•丨BD丨=4,當(dāng)直線斜率存在時,設(shè)直線方程,代入橢圓方程,由韋達(dá)定理及弦長公式分別求得丨AC丨,丨BD丨根據(jù)函數(shù)的單調(diào)性即可求得四邊形ABCD面積的最大值.

解答 解:(Ⅰ)由題意可知:|F1F2|=2c=2,c=1,2a=|PF1|+|PF2|=2$\sqrt{3}$,a=$\sqrt{3}$,
b2=a2-c2=2,離心率e=$\frac{c}{a}$=$\frac{\sqrt{3}}{3}$,
∴橢圓的標(biāo)準(zhǔn)方程為:$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}=1$;
(Ⅱ)當(dāng)直線l2⊥l1,當(dāng)斜率不存在時,EF1⊥EF2,此時求得丨EO丨=$\frac{1}{2}$丨F1F2丨=1,
∴E點軌跡為以原點為圓心,半徑為1的圓,顯然點E在橢圓W上內(nèi)部,
∴四邊形ABCD面積S=S△ABC+S△ADC=$\frac{1}{2}$丨AC丨•丨BE丨+$\frac{1}{2}$丨AC丨•丨DE丨=$\frac{1}{2}$丨AC丨•丨BD丨,
將x=-1代入橢圓方程,求得y=±$\frac{2\sqrt{3}}{3}$,此時丨BD丨=$\frac{4\sqrt{3}}{3}$,丨AC丨=2$\sqrt{3}$,
則四邊形ABCD面積S=$\frac{1}{2}$丨AC丨•丨BD丨=4,
當(dāng)直線l2,l1都存在時,設(shè)直線l1,x=my-1,(m≠0),
設(shè)A(x1,y1),B(x2,y2),
$\left\{\begin{array}{l}{x=my-1}\\{\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}=1}\end{array}\right.$,整理得:(2m2+3)y2-4my-4=0,
則y1+y2=$\frac{4m}{2{m}^{2}+3}$,y1y2=-$\frac{4}{2{m}^{2}+3}$,
則丨AC丨=$\sqrt{1+{m}^{2}}$•$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$=$\frac{4\sqrt{3}({m}^{2}+1)}{2{m}^{2}+3}$,
同理直線l1,x=-$\frac{1}{m}$x+1,同理求得丨BD丨=$\frac{4\sqrt{3}({m}^{2}+1)}{2+3{m}^{2}}$,
∴四邊形ABCD面積S=$\frac{1}{2}$丨AC丨•丨BD丨=$\frac{1}{2}$×$\frac{4\sqrt{3}({m}^{2}+1)}{2{m}^{2}+3}$×$\frac{4\sqrt{3}({m}^{2}+1)}{2+3{m}^{2}}$,
=$\frac{24({m}^{2}+1)^{2}}{(2{m}^{2}+3)(3{m}^{2}+2)}$,
=$\frac{24({m}^{4}+2{m}^{2}+1)}{6{m}^{4}+13{m}^{2}+6}$=4×$\frac{6{m}^{4}+12{m}^{2}+6}{6{m}^{4}+13{m}^{2}+6}$,
=4(1-$\frac{{m}^{2}}{6{m}^{4}+13{m}^{2}+6}$)<4,
綜上可知四邊形ABCD面積的最大值4,此時直線l2,l1一條為橢圓的長軸,一條與x軸垂直.

點評 本題考查橢圓的標(biāo)準(zhǔn)方程及簡單幾何性質(zhì),考查直線與橢圓的位置關(guān)系,考查韋達(dá)定理,弦長公式,考查函數(shù)的單調(diào)性及橢圓的綜合應(yīng)用,考查計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.向如圖所示的邊長為2的正方形區(qū)域內(nèi)任投一點,則該點落入陰影部分的概率為$\frac{1}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.為響應(yīng)“精確扶貧”號召,某企業(yè)計劃每年用不超過100萬元的資金購買單價分別為1500元/箱和3000元/箱的A、B兩種藥品捐獻(xiàn)給貧困地區(qū)某醫(yī)院,其中A藥品至少100箱,B藥品箱數(shù)不少于A藥品箱數(shù).則該企業(yè)捐獻(xiàn)給醫(yī)院的兩種藥品總箱數(shù)最多可為(  )
A.200B.350C.400D.500

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖,有一個水平放置的透明無蓋的正三棱柱容器,其中側(cè)棱長為8cm,底面邊長為12cm,將一個球放在容器口,再向容器內(nèi)注水,當(dāng)球面恰好接觸水面時,測得水深為6cm,如果不計容器的厚度,則球的表面積為( 。
A.36πcm2B.64πcm2C.80πcm2D.100πcm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$經(jīng)過點$(0,\sqrt{2})$,且離心率為$\frac{{\sqrt{2}}}{2}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)A,B是橢圓C的左,右頂點,P為橢圓上異于A,B的一點,以原點O為端點分別作與直線AP和BP平行的射線,交橢圓C于M,N兩點,求證:△OMN的面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.向量$\overrightarrow m=({λ+1,1}),\overrightarrow n=({λ+3,2})$,若$\overrightarrow m∥\overrightarrow n$,則λ=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.民大附中的甲、乙兩人同時參加某大學(xué)的自主招生,在申請材料中提交了某學(xué)科10次的考試成績(滿分100分),按照時間順序記錄如下:

(1)根據(jù)兩組數(shù)據(jù)畫出兩人成績的莖葉圖,并通過莖葉圖比較兩人成績的平均值及分散程度(不要求計算具體值,直接寫出結(jié)論即可);
(2)現(xiàn)將兩人成績分為三個等級:
成績分?jǐn)?shù)[0,70][70,90][90,100]
等級C級B級A級
注:A級高于B級,B級高于C級
假設(shè)兩人的成績相互獨立,根據(jù)所給的數(shù)據(jù),以事件發(fā)生的頻率為相應(yīng)事件發(fā)生的概率,求甲的等級高于乙的等級的概率;
(3)假如你是該大學(xué)的招生老師,結(jié)合上述數(shù)據(jù),決定應(yīng)錄取哪位同學(xué),說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知集合A={x|2x>1},集合B={x||x|≤2},則A∩B=(  )
A.(0,2]B.[0,2]C.[-2,2]D.(-2,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖所示,四棱錐VABCD的底面為邊長等于2cm的正方形,頂點V與底面正方形中心的連線為棱錐的高,側(cè)棱長VC=4cm,求這個正四棱錐的體積.

查看答案和解析>>

同步練習(xí)冊答案