5.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1、F2,點(diǎn)P在雙曲線的右支上,且|PF1|=4|PF2|,則此雙曲線的離心率e的最大值為( 。
A.$\frac{4}{3}$B.$\frac{5}{3}$C.$\frac{5}{4}$D.2

分析 由題意可得|PF1|-|PF2|=2a,再由|PF2|≥c-a,結(jié)合離心率公式,即可得到所求最大值.

解答 解:點(diǎn)P在雙曲線的右支上,且|PF1|=4|PF2|,
由雙曲線的定義可得|PF1|-|PF2|=2a,
即有4|PF2|-|PF2|=2a,
則|PF2|=$\frac{2}{3}$a,
由|PF2|≥c-a,
即為c≤$\frac{5}{3}$a,
可得e=$\frac{c}{a}$≤$\frac{5}{3}$,
當(dāng)P與右頂點(diǎn)重合,取得最大值$\frac{5}{3}$,
故選:B.

點(diǎn)評(píng) 本題考查雙曲線的離心率的最值,注意運(yùn)用雙曲線的定義和范圍,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=$\sqrt{3}sin2x+2{cos^2}$x+m在$x∈[{0,\frac{π}{2}}]$上的最大值是6.
(1)求m的值以及函數(shù)f(x)的單調(diào)增區(qū)間;
(2)在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,f(A)=5,a=4,且△ABC的面積為$\sqrt{3}$,求b+c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知 $\overrightarrow{a}$=(-l,3),$\overrightarrow$=(2,-5),若 2$\overrightarrow{a}$+$\overrightarrow{c}$=5$\overrightarrow$,則$\overrightarrow{c}$的坐標(biāo)為(  )
A.(-10,25)B.(-12,27)C.(10,-26)D.(12,-31)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=cosα}\\{y=\sqrt{3}sinα}\end{array}\right.$(α為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρsin(θ+$\frac{π}{4}$)=4$\sqrt{2}$.
(Ⅰ)求直角坐標(biāo)系下曲線C1與曲線C2的方程;
(Ⅱ)設(shè)P為曲線C1上的動(dòng)點(diǎn),求點(diǎn)P到C2上點(diǎn)的距離的最大值,并求此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.若向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=1,($\overrightarrow{a}$+2$\overrightarrow$)⊥$\overrightarrow{a}$,(2$\overrightarrow{a}$+$\overrightarrow$)⊥$\overrightarrow$,則|$\overrightarrow$|=( 。
A.2B.$\frac{\sqrt{2}}{2}$C.1D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,P為雙曲線右支上的一點(diǎn),△POF1為等腰三角形,過(guò)點(diǎn)P作y軸的垂線,延長(zhǎng)后交雙曲線的左支于點(diǎn)Q,若$\overrightarrow{PQ}$=$\frac{1}{2}$$\overrightarrow{{F}_{2}{F}_{1}}$,則雙曲線離心率為$\sqrt{3}$+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.函數(shù)$f(x)=sin(2x+\frac{π}{3})$給出下列結(jié)論正確的是(  )
A.f(x)在$(\frac{π}{12},\frac{2π}{3})$是減函數(shù)B.$f(x-\frac{π}{6})$是奇函數(shù)
C.f(x)的一個(gè)對(duì)稱(chēng)中心為$(\frac{π}{6},0)$D.f(x)的一條對(duì)稱(chēng)軸為$x=\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.若函數(shù)f(x)=lg(10x+1)+ax是偶函數(shù),g(x)=$\frac{{4}^{x}-b}{{2}^{x}}$是奇函數(shù),則a+b的值是( 。
A.0.5B.1C.-0.5D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.如圖所示,∠BAC=$\frac{2π}{3}$,圓M與AB,AC分別相切于點(diǎn)D,E,AD=1,點(diǎn)P是圓M及其內(nèi)部任意一點(diǎn),且$\overrightarrow{AP}$=x$\overrightarrow{AD}$+y$\overrightarrow{AE}$(x,y∈R),則x+y的取值范圍是[4-2$\sqrt{3}$,4+2$\sqrt{3}$].

查看答案和解析>>

同步練習(xí)冊(cè)答案