3.設(shè)i是虛數(shù)單位,則復(fù)數(shù)z=$\frac{i-3}{1+i}$的實(shí)部為( 。
A.2B.-2C.1D.-1

分析 直接利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)得答案.

解答 解:∵z=$\frac{i-3}{1+i}$=$\frac{(i-3)(1-i)}{(1+i)(1-i)}=\frac{-2+4i}{2}=-1+2i$,
∴復(fù)數(shù)z=$\frac{i-3}{1+i}$的實(shí)部為-1.
故選:D.

點(diǎn)評(píng) 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)的計(jì)算題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=|x+1|-|x-1|.
(1)解關(guān)于x的不等式f(x)≤1;
(2)設(shè)函數(shù)f(x)的最大值為M,若M=3a+4b(a>0,b>0),求證:$\frac{1}{a+3b}+\frac{1}{2a+b}$≥2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.在一次共有15000名考生的某市高二的聯(lián)考中,這些學(xué)生的數(shù)學(xué)成績(jī)?chǔ)畏䦶恼龖B(tài)分布 N(100,δ2),且p(80<ξ≤100)=0.35.若按成績(jī)分層抽樣的方式抽取100份試卷進(jìn)行分析,則應(yīng)從120分以上的試卷中抽。ā 。
A.20份B.15份C.10份D.5份

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知直線l過(guò)點(diǎn)P(1,1),且與曲線y=x3在點(diǎn)P處的切線互相垂直,則直線l的方程為( 。
A.x+3y+4=0B.x+3y-4=0C.3x-y+2=0D.3x-y-2=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖1,平面五邊形ABCFE是由邊長(zhǎng)為2的正方形ABCD與上底為1,高為$\sqrt{3}$的直角梯形組合而成,將五邊形ABCFE沿著CD折疊,得到圖2所示的空間幾何體,其中AF⊥CF.
(Ⅰ)證明:BD⊥平面AFC;
(Ⅱ)求二面角A-FB-C的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知復(fù)數(shù)z滿足z•i=1+2i,則在復(fù)平面內(nèi),z所對(duì)應(yīng)的點(diǎn)的坐標(biāo)是(  )
A.(2,1)B.(1,2)C.(-1,2)D.(2,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.如果{an}為遞增數(shù)列,則{an}的通項(xiàng)公式可以是( 。
A.an=-n+2(n∈N*)B.an=1+log3n(n∈N*)C.an=$\frac{1}{{2}^{n}}$(n∈N*)D.an=n2-3n(n∈N*)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知$\overrightarrow{a}$=(m,1),$\overrightarrow$=(1,-2).若 $\overrightarrow{a}$∥$\overrightarrow$,則實(shí)數(shù)m=-$\frac{1}{2}$;若$\overrightarrow{a}$⊥$\overrightarrow$,則實(shí)數(shù) m=2;若|$\overrightarrow{a}$|<|$\overrightarrow$|,則實(shí)數(shù)m的取值范圍是(-2,2),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,在矩形ABCD中,F(xiàn)是邊CD的中點(diǎn),M是AF與BD交點(diǎn),設(shè)$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow$
(1)用$\overrightarrow{a}$,$\overrightarrow$表示向量$\overrightarrow{AF}$
(2)證明:M是對(duì)角線BD的三等分點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案