6.設(shè)向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=2,|$\overrightarrow$|=|$\overrightarrow{a}$+$\overrightarrow$|=3,則|$\overrightarrow{a}$+2$\overrightarrow$|=4$\sqrt{2}$.

分析 分別求出$\overline{a}$,$\overrightarrow$的模,求出2$\overrightarrow{a}$•$\overrightarrow$的值,從而求出|$\overrightarrow{a}$+2$\overrightarrow$|的值即可.

解答 解:∵|$\overrightarrow{a}$|=2,|$\overrightarrow$|=|$\overrightarrow{a}$+$\overrightarrow$|=3,
∴${\overrightarrow{a}}^{2}$=4,${\overrightarrow}^{2}$=9,
∴${\overrightarrow{a}}^{2}$+2$\overrightarrow{a}$•$\overrightarrow$+${\overrightarrow}^{2}$=9,
故2$\overrightarrow{a}$•$\overrightarrow$=-4,
故${\overrightarrow{a}}^{2}$+4$\overrightarrow{a}$•$\overrightarrow$+4${\overrightarrow}^{2}$=4+36-8=32,
故|$\overrightarrow{a}$+2$\overrightarrow$|=4$\sqrt{2}$,
故答案為:4$\sqrt{2}$.

點評 本題考查了向量的運算,考查向量求模問題,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)a=0.30.1,b=log${\;}_{\frac{1}{3}}$$\frac{1}{5}$,c=log425,則a,b,c的大小關(guān)系是( 。
A.a>b>cB.a>c>bC.b>c>aD.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)實數(shù)x、y滿足$\left\{\begin{array}{l}{2x+y≥4}\\{x-y≥-1}\\{x-2y≤2}\end{array}\right.$,則z=x+y為( 。
A.有最小值2,無最大值B.有最小值2,最大值3
C.有最大值3,無最小值D.既無最小值,也無最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=1,$\overrightarrow$與$\overrightarrow$-$\overrightarrow{a}$的夾角為120°,則|$\overrightarrow$|的取值范圍是(0,1);|$\overrightarrow$|2-($\overrightarrow{a}$•$\overrightarrow$)2的最大值為$\frac{1}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知圓O:x2+y2=1和定點A(2,1),由圓外一點P(a,b)向圓O引切線PQ,切點為Q,且滿足|PQ|=|PA|.
(1)求實數(shù)a,b間滿足的等量關(guān)系式;
(2)求△OQP面積的最小值;
(3)求||PO|-|PA||的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)△ABC的三個內(nèi)角為A,B,C,且tan A,tan B,tan C,2tan B依次成等差數(shù)列,則sin2B=( 。
A.1B.-$\frac{4}{5}$C.$\frac{4}{5}$D.±$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知定義域為R的函數(shù)f(x)滿足f(f(x)-x2+x)=f(x)-x2+x.
(1)若f(3)=3,求f(-3)的值;
(2)若有且僅有一個實數(shù)x0滿足f(x0)=x0’且函數(shù)$g(x)=\frac{1}{{{4^x}+m•{2^x}+4}}$的定義域為R,
①求實數(shù)m的取值范圍;           
 ②求f(m)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若對任意的 x,y∈(0,+∞),不等式ex+y-4+ex-y-4+6≥4xlna恒成立,則正實數(shù)a的最大值是(  )
A.$\sqrt{e}$B.$\frac{1}{2}e$C.eD.2e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)f(x)=x2+2(a-1)x+1在(-∞,-2)上是減函數(shù),則a的取值范圍是(-∞,3].

查看答案和解析>>

同步練習(xí)冊答案