A. | $\sqrt{2}$ | B. | 2 | C. | $2\sqrt{2}$ | D. | 4 |
分析 求得圓的圓心和半徑,運(yùn)用拋物線的定義可得A,C,F(xiàn)三點(diǎn)共線時取得最小值,且有A為CF的中點(diǎn),設(shè)出A,C,F(xiàn)的坐標(biāo),代入拋物線的方程可得p,由拋物線的定義可得P.
解答 解:圓C:x2+(y-4)2=a2的圓心C(0,2$\sqrt{2}$),半徑為a,|AC|+|AF|=2a,
由拋物線M上一動點(diǎn)M到其準(zhǔn)線與到點(diǎn)C的距離之和的最小值為2a,
由拋物線的定義可得動點(diǎn)到焦點(diǎn)與到點(diǎn)C的距離之和的最小值為2a,
點(diǎn)M在A處取最小值,可得A,C,F(xiàn)三點(diǎn)共線時取得最小值,且有A為CF的中點(diǎn)
由D(0,2$\sqrt{2}$),F(xiàn)($\frac{p}{2}$,0),可得A($\frac{p}{4}$,$\sqrt{2}$),
代入拋物線的方程可得2=2p×$\frac{p}{4}$,解得p=2.
故選:B
點(diǎn)評 本題考查拋物線的定義、方程和性質(zhì),注意運(yùn)用拋物線的定義和三點(diǎn)共線和最小,考查運(yùn)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|-2≤x<0} | B. | {x|-1<x<0} | C. | {-2,0} | D. | {x|1<x≤2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 15 | B. | 27 | C. | 30 | D. | 40 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 命題“p∨q為真”是命題“p∧q為真”的必要條件 | |
B. | 向量$\overrightarrow{a}$,$\overrightarrow$滿足$\overrightarrow{a}•\overrightarrow>0$,則$\overrightarrow{a}$與$\overrightarrow$的夾角為銳角 | |
C. | 若am2≤bm2,則a≤b | |
D. | “?x0∈R,x02-x0≤0”的否定是“?x∈R,x2-x≥0” |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com