3.在復(fù)平面內(nèi),復(fù)數(shù)$\frac{3+4i}{i}$對(duì)應(yīng)的點(diǎn)的坐標(biāo)為(4,-3).

分析 利用復(fù)數(shù)的運(yùn)算法則、幾何意義即可得出.

解答 解:復(fù)數(shù)$\frac{3+4i}{i}$=$\frac{-i(3+4i)}{-i•i}$=-3i+4對(duì)應(yīng)的點(diǎn)的坐標(biāo)為(4,-3).
故答案為:(4,-3).

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、幾何意義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某校高三特長(zhǎng)班的一次月考數(shù)學(xué)成績(jī)的莖葉圖和頻率分布直方圖1都受到不同程度的損壞,但可見部分如圖2,據(jù)此解答如下問題:

(Ⅰ)求分?jǐn)?shù)在[70,80)之間的頻數(shù),并計(jì)算頻率分布直方圖中[70,80)間的矩形的高;
(Ⅱ)若要從分?jǐn)?shù)在[50,70)之間的試卷中任取兩份分析學(xué)生失分情況,在抽取的試卷中,求至少有一份在[50,60)之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.公元263年左右,我國(guó)古代數(shù)學(xué)家劉徽用圓內(nèi)接正多邊形的面積去逼近圓的面積求圓周率π,劉徽稱這個(gè)方法為“割圓術(shù)”,并且把“割圓術(shù)”的特點(diǎn)概括為“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”下圖是根據(jù)劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖.若運(yùn)行該程序,則輸出的n的值為:(參考數(shù)據(jù):$\sqrt{3}$≈1.732,sin15°≈0.2588,sin7.5°≈0.1305)( 。
A.48B.36C.30D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{20}$=1(a>0)的一條漸近線方程為y=2x,則該雙曲線的焦距為10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=sin2xcos$\frac{3π}{5}-cos2xsin\frac{3π}{5}$.
(Ⅰ)求f(x)的最小正周期和對(duì)稱軸的方程;
(Ⅱ)求f(x)在區(qū)間$[0,\frac{π}{2}]$上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某社區(qū)超市購進(jìn)了A,B,C,D四種新產(chǎn)品,為了解新產(chǎn)品的銷售情況,該超市隨機(jī)調(diào)查了15位顧客(記為ai,i=1,2,3,…,15)購買這四種新產(chǎn)品的情況,記錄如下(單位:件):


產(chǎn)
a1a2a3a4a5a6a7a8a9a10a11a12a13a14a15
A11111
B11111111
C1111111
D111111
(Ⅰ)若該超市每天的客流量約為300人次,一個(gè)月按30天計(jì)算,試估計(jì)產(chǎn)品A的月銷售量(單位:件);
(Ⅱ)為推廣新產(chǎn)品,超市向購買兩種以上(含兩種)新產(chǎn)品的顧客贈(zèng)送2元電子紅包.現(xiàn)有甲、乙、丙三人在該超市購物,記他們獲得的電子紅包的總金額為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望;
(Ⅲ)若某顧客已選中產(chǎn)品B,為提高超市銷售業(yè)績(jī),應(yīng)該向其推薦哪種新產(chǎn)品?(結(jié)果不需要證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}x≥0\;\\ y≤x\;\\ x+y+a≤0\;\end{array}\right.$且z=x+3y的最大值為4,則實(shí)數(shù)a的值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)的導(dǎo)函數(shù)f′(x),滿足(x-1)[xf′(x)-f(x)]>0,則下列關(guān)于f(x)的命題正確的是( 。
A.f(3)<f(-3)B.f(2)>f(-2)C.f(3)<f(2)D.2f(3)>3f(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{3x-y-7≥0}\\{5x-4y≤0}\\{y≤10}\end{array}\right.$,則$\frac{y+x}{x}$的最大值為( 。
A.1B.$\frac{30}{17}$C.$\frac{47}{17}$D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案