9.已知f'(x)是奇函數(shù)f(x)的導(dǎo)函數(shù),f(-1)=0,當(dāng)x>0時(shí),f′(x)<$\frac{f(x)}{x}$,則使得f(x)>0成立的x的取值范圍是( 。
A.(-∞,-1)∪(0,1)B.(-1,0)∪(1,+∞)C.(-1,0)∪(0,1)D.(-∞,-1)∪(1,+∞)

分析 根據(jù)題意,構(gòu)造函數(shù)g(x)=$\frac{f(x)}{x}$,分析可得g(x)為偶函數(shù),且g(-1)=g(1)=0,對(duì)g(x)求導(dǎo)可得g′(x),分析可得g′(x)<0,即函數(shù)g(x)在(0,+∞)上為減函數(shù),進(jìn)而分析可得g(x)=$\frac{f(x)}{x}$>0在(0,+∞)的解集為(0,1),即f(x)>0在(0,+∞)的解集為(0,1),結(jié)合函數(shù)f(x)的奇偶性可得f(x)>0在(-∞,0)的解集,綜合可得答案.

解答 解:根據(jù)題意,令g(x)=$\frac{f(x)}{x}$,則有g(shù)(-x)=$\frac{f(-x)}{(-x)}$=$\frac{f(x)}{x}$=g(x),即g(x)為偶函數(shù);
f(-1)=0,則有g(shù)(-1)=$\frac{f(-1)}{(-1)}$=0,
又由g(x)為偶函數(shù),則g(1)=0,
g(x)=$\frac{f(x)}{x}$,g′(x)=$\frac{f′(x)•x-(x)′•f(x)}{{x}^{2}}$=$\frac{x•f′(x)-f(x)}{{x}^{2}}$,
又由當(dāng)x>0時(shí),f′(x)<$\frac{f(x)}{x}$,即x•f′(x)-f(x)<0,
則有g(shù)′(x)=$\frac{f′(x)•x-(x)′•f(x)}{{x}^{2}}$=$\frac{x•f′(x)-f(x)}{{x}^{2}}$<0,即函數(shù)g(x)在(0,+∞)上為減函數(shù);
又由g(1)=0,
則g(x)=$\frac{f(x)}{x}$>0在(0,+∞)的解集為(0,1),
即f(x)>0在(0,+∞)的解集為(0,1),
又由f(x)為奇函數(shù),則f(x)>0在(-∞,0)的解集為(-∞,-1),
綜合可得:f(x)>0的解集為(-∞,-1)∪(0,1);
故選:A.

點(diǎn)評(píng) 本題考查函數(shù)的導(dǎo)數(shù)與單調(diào)性的關(guān)系,涉及函數(shù)奇偶性的性質(zhì),關(guān)鍵是構(gòu)造函數(shù)g(x).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.在△ABC中,a,b,c分別為內(nèi)角A,B,C的對(duì)邊,且a2=3b2+3c2-2$\sqrt{3}$bcsinA,則C的值為( 。
A.$\frac{π}{3}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.如圖,△ABC中,M是中線AD的中點(diǎn).若|$\overrightarrow{AB}$|=2,|$\overrightarrow{AC}$|=3,∠BAC=60°,則$\overrightarrow{AM}$•$\overrightarrow{BM}$的值為-$\frac{9}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.五本不同的書(shū)在書(shū)架上排成一排,其中甲,乙兩本必須連排,而丙,丁兩本不能連排,則不同的排法共( 。
A.12種B.20種C.24種D.48種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知sin($\frac{π}{6}$+α)=$\frac{\sqrt{3}}{3}$,則cos($\frac{π}{3}$-α)=$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若m是2和8的等比中項(xiàng),則圓錐曲線$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{m}$=1的離心率是( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{3}$C.$\frac{1}{2}$或$\frac{\sqrt{21}}{3}$D.$\frac{\sqrt{3}}{3}$或$\frac{\sqrt{21}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.如圖,在三棱錐A-BCD中,E是AC中點(diǎn),F(xiàn)在線段AD上,且FD=3AF,則三棱錐A-BEF的體積與四棱錐B-ECDF的體積的比值為$\frac{1}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知函數(shù)f(x)=|sinx|+cosx,現(xiàn)有如下幾個(gè)命題:
①該函數(shù)為偶函數(shù);
②該函數(shù)最小正周期為$\frac{π}{2}$;
③該函數(shù)值域?yàn)?[-1,\sqrt{2}]$;
④若定義區(qū)間(a,b)的長(zhǎng)度為b-a,則該函數(shù)單調(diào)遞增區(qū)間長(zhǎng)度的最大值為$\frac{3π}{4}$.
其中正確命題為①③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知△ABC中,BC=1,A=120°,∠B=θ,記f(θ)=$\overrightarrow{BC}•\overrightarrow{AC}$,
①求f(θ)關(guān)于θ的表達(dá)式.
②求f(θ)的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案