5.已知隨機(jī)變量X服從正態(tài)分布N(100,4),若P(102<X<m)=0.1359,則m等于[駙:P(μ-σ<X<μ+σ)=0.6826,P(μ-2σ<X<μ+2σ)=0.9544]( 。
A.103B.104C.105D.106

分析 根據(jù)正態(tài)分布的對(duì)稱性求出答案.

解答 解:∵隨機(jī)變量X服從正態(tài)分布N(100,4),
∴P(98<X<102)=0.6826,P(96<X<104)=0.9544,
∴P(102<X<104)=$\frac{1}{2}$(0.9544-0.6826)=0.1359,
∴m=104.
故選B.

點(diǎn)評(píng) 本題考查了正態(tài)分布的對(duì)稱性,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.如圖,為了探求曲線y=x2,x=2與x軸圍成的曲邊三角形OAP的面積,用隨機(jī)模擬的方法向矩形OAPB內(nèi)隨機(jī)投點(diǎn)1080次,現(xiàn)統(tǒng)計(jì)落在曲邊三角形OAP的次數(shù)360次,則可估算曲邊三角形OAP面積為$\frac{8}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.自地面垂直向上發(fā)射火箭,火箭的質(zhì)量為m,試計(jì)算將火箭發(fā)射到距地面的高度為h時(shí)所做的功.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)f(x)=|2x-1|+|1-x|
(1)解不等式f(x)≥x+4;
(2)若對(duì)任意的x∈R,不等式f(x)≥(m2-3m+3)•|x|恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=9x-4•3x+3
(1)求方程f(x)=0的解;
(2)當(dāng)x∈[0,2]時(shí),求函數(shù)f(x)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.某單位共有職工120人,其中男職工有48人,現(xiàn)用分層抽樣法抽取一個(gè)15人的樣本,則女職工應(yīng)抽取的人數(shù)為(  )
A.8B.9C.10D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知雙曲線$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{m}$=1的一個(gè)焦點(diǎn)在直線x+y=5上,則雙曲線的漸近線方程為( 。
A.y=±$\frac{3}{4}$xB.y=±$\frac{4}{3}$xC.y=±$\frac{2\sqrt{2}}{3}$xD.y=±$\frac{3\sqrt{2}}{4}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知點(diǎn)P(-1,m)在直線l1:ax+y+2a=0上,且圓C:x2+y2-8y+12=0關(guān)于直線l1對(duì)稱.
(1)求a、m的值;
(2)若過點(diǎn)P的直線l2與圓C相切,求直線l2的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)a,b∈R,則“$log_2^a>log_2^b$”是“2a-b>1”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案