14.設(shè)函數(shù)f(x)=ln(e+x)+ln(e-x),則f(x)是( 。
A.奇函數(shù),且在(0,e)上是增函數(shù)B.奇函數(shù),且在(0,e)上是減函數(shù)
C.偶函數(shù),且在(0,e)上是增函數(shù)D.偶函數(shù),且在(0,e)上是減函數(shù)

分析 確定函數(shù)的奇偶性、單調(diào)性,即可得出結(jié)論.

解答 解:由題意,f(-x)=ln(e-x)+ln(e+x)=f(x),函數(shù)是偶函數(shù),
在(0,e)上,f′(x)=$\frac{1}{e+x}$-$\frac{1}{e-x}$=$\frac{-2x}{{e}^{2}-{x}^{2}}$<0,函數(shù)單調(diào)遞減,
故選D.

點(diǎn)評 本題考查函數(shù)的奇偶性、單調(diào)性,考查學(xué)生分析解決問題的能力,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知定義在R上的函數(shù)f(x)滿足:①f(x)+f(2-x)=0;②f(x)-f(-2-x)=0;③在[-1,1]上的表達(dá)式為$f(x)=\left\{\begin{array}{l}\sqrt{1-{x^2}},x∈[-1,0]\\ 1-x,x∈(0,1]\end{array}\right.$,則函數(shù)f(x)與$g(x)=\left\{\begin{array}{l}{2^x},x≤0\\{log_{\frac{1}{2}}}x,x>0\end{array}\right.$的圖象在區(qū)間[-3,3]上的交點(diǎn)的個數(shù)為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若雙曲線E:$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一個焦點(diǎn)為F(3,0),過F點(diǎn)的直線l與雙曲線E交于A,B兩點(diǎn),且AB的中點(diǎn)為P(-3,-6),則E的方程為( 。
A.$\frac{{x}^{2}}{5}$$-\frac{{y}^{2}}{4}$=1B.$\frac{{x}^{2}}{4}$$-\frac{{y}^{2}}{5}$=1C.$\frac{{x}^{2}}{6}$$-\frac{{y}^{2}}{3}$=1D.$\frac{{x}^{2}}{3}$$-\frac{{y}^{2}}{6}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列命題為真命題的個數(shù)是( 。
①e${\;}^{\frac{2}{e}}$>2;②ln2>$\frac{2}{3}$;③$\frac{lnπ}{π}$<$\frac{1}{e}$;④$\frac{ln2}{2}$<$\frac{lnπ}{π}$.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.若cos($\frac{π}{4}$+θ)cos($\frac{π}{4}$-θ)=$\frac{1}{4}$,求sin4θ+cos4θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)函數(shù)f(x)=ex-e-x,g(x)=lg(mx2-x+$\frac{1}{4}$),若對任意x1∈(-∞,0],都存在x2∈R,使得f(x1)=g(x2),則實數(shù)m的最小值為( 。
A.-$\frac{1}{3}$B.-1C.-$\frac{1}{2}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知$\overrightarrow{a}$=(x,1),$\overrightarrow$=(1,2),$\overrightarrow{c}$=(-1,5),若($\overrightarrow{a}$+2$\overrightarrow$)∥$\overrightarrow{c}$,則|$\overrightarrow{a}$|=$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某小型玩具廠擬對n件產(chǎn)品在出廠前進(jìn)行質(zhì)量檢測,若一件產(chǎn)品通過質(zhì)量檢測能獲利潤10元;否則產(chǎn)品報廢,虧損10元.設(shè)該廠的每件產(chǎn)品能通過質(zhì)量檢測的概率為$\frac{2}{3}$,每件產(chǎn)品能否通過質(zhì)量檢測相互獨(dú)立,現(xiàn)記對n件產(chǎn)品進(jìn)行質(zhì)量檢測后的總利潤為Sn
(Ⅰ)若n=6時,求恰有4件產(chǎn)品通過質(zhì)量檢測的概率;
(Ⅱ)記X=S5,求X的分布列,并計算數(shù)學(xué)期望E(X)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖:在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是正方形,PA=AD=2.
(1)求異面直線PC與AB所成角的大。ńY(jié)果用反三角函數(shù)值表示);
(2)求點(diǎn)E、F分別是棱AD和PC的中點(diǎn),求證:EF⊥平面PBC.

查看答案和解析>>

同步練習(xí)冊答案