A. | 重心 | B. | 垂心 | C. | 外心 | D. | 內(nèi)心 |
分析 可先根據(jù)數(shù)量積為零得出 $\overrightarrow{BC}$與λ(${\frac{{\overrightarrow{AB}}}{{|{\overrightarrow{AB}}|cosB}}$+$\frac{{\overrightarrow{AC}}}{{|{\overrightarrow{AC}}|cosC}}}$),垂直,可得點P在BC的高線上,從而得到結(jié)論.
解答 解:由$\overrightarrow{OP}$=$\overrightarrow{OA}$+λ(${\frac{{\overrightarrow{AB}}}{{|{\overrightarrow{AB}}|cosB}}$+$\frac{{\overrightarrow{AC}}}{{|{\overrightarrow{AC}}|cosC}}}$)⇒$\overrightarrow{OP}$-$\overrightarrow{OA}$=λ(${\frac{{\overrightarrow{AB}}}{{|{\overrightarrow{AB}}|cosB}}$+$\frac{{\overrightarrow{AC}}}{{|{\overrightarrow{AC}}|cosC}}}$)⇒,$\overrightarrow{AP}$=λ(${\frac{{\overrightarrow{AB}}}{{|{\overrightarrow{AB}}|cosB}}$+$\frac{{\overrightarrow{AC}}}{{|{\overrightarrow{AC}}|cosC}}}$),
又∵$\overrightarrow{BC}•$$\overrightarrow{AP}$=λ(${\frac{{\overrightarrow{AB}}}{{|{\overrightarrow{AB}}|cosB}}$+$\frac{{\overrightarrow{AC}}}{{|{\overrightarrow{AC}}|cosC}}}$)$•\overrightarrow{BC}$=-|$\overrightarrow{BC}$|+|$\overrightarrow{BC}$|=0,∴$\overrightarrow{AP}⊥\overrightarrow{BC}$
∴點P在BC的高線上,即P的軌跡過△ABC的垂心
故選B.
點評 本題主要考查了向量在幾何中的應(yīng)用、空間向量的加減法、軌跡方程、以及三角形的五心等知識,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com