2.給定兩個(gè)命題p:$\frac{x^2}{2-a}-\frac{y^2}{a+1}=1$表示焦點(diǎn)在x軸上的雙曲線;q:關(guān)于x的方程x2-4x-a=0有實(shí)數(shù)根.如果¬p∧q為真命題,求實(shí)數(shù)a的取值范圍.

分析 若命題p為真,則$\left\{\begin{array}{l}{2-a>0}\\{a+1>0}\end{array}\right.$,解得a范圍.若命題Q為真,則△≥0,解得a范圍.因?yàn)?SUP>?p∧q為真命題,則P假Q(mào)真.

解答 解:若命題p為真,則$\left\{\begin{array}{l}{2-a>0}\\{a+1>0}\end{array}\right.$,解得-1<a<2,…(3分)
若命題Q為真,則△=16+4a≥0,得a≥-4      …(6分)
因?yàn)?SUP>?p∧q為真命題,則P假Q(mào)真,…(8分)
則$\left\{\begin{array}{l}a≤-1或a≥2\\ a≥-4\end{array}\right.⇒-4≤a≤-1或a≥2$
所以實(shí)數(shù)a的取值范圍是-4≤a≤-1或a≥2…(10分)

點(diǎn)評 本題考查了雙曲線的標(biāo)準(zhǔn)方程、一元二次方程的實(shí)數(shù)根與判別式的關(guān)系、簡易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知拋物線y2=2px(p>0)過點(diǎn)A(2,2),則它的準(zhǔn)線方程是(  )
A.$x=-\frac{1}{2}$B.$y=-\frac{1}{2}$C.$x=\frac{1}{2}$D.$y=\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知集合A={x|x(x+1)≤0},集合B={x|x>0},則A∪B=( 。
A.{x|x≥-1}B.{x|x>-1}C.{x|x≥0}D.{x|x>0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在數(shù)列{an}中,a1=1,若${a_{n+1}}=2{a_n}+2(n∈{N^*})$,則an=3•2n-1-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.一個(gè)棱長為$6\sqrt{2}$的正四面體紙盒內(nèi)放一個(gè)正方體,若正方體可以在紙盒內(nèi)任意轉(zhuǎn)動(dòng),則正方體棱長的最大值為( 。
A.1B.$\sqrt{2}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知橢圓${C_{\;}}:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{{\sqrt{3}}}{2}$,一個(gè)短軸端點(diǎn)到焦點(diǎn)的距離為2.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知直線l:x+4y-2=0,過點(diǎn)A(2,2)作直線m交橢圓C于不同的兩點(diǎn)E,F(xiàn)交直線l于點(diǎn)K,問:是否存在常數(shù)t,使得$\frac{1}{|AE|}+\frac{1}{|AF|}=\frac{t}{|AK|}$恒成立,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知f(x)是定義在R上的偶函數(shù),且在區(qū)間(-∞,0)上單調(diào)遞減,若實(shí)數(shù)a滿足f(3|2a+1|)>f(-$\sqrt{3}$),則a的取值范圍是( 。
A.(-∞,-$\frac{3}{4}$)∪(-$\frac{1}{4}$,+∞)B.(-∞,-$\frac{3}{4}$)C.(-$\frac{1}{4}$,+∞)D.(-$\frac{3}{4}$,-$\frac{1}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如圖,N、S是球O直徑的兩個(gè)端點(diǎn),圓C1是經(jīng)過N和S點(diǎn)的大圓,圓C2和圓C3分別是所在平面與NS垂直的大圓和小圓,圓C1和C2交于點(diǎn)A、B,圓C1和C3交于點(diǎn)C、D,設(shè)a、b、c分別表示圓C1上劣弧CND的弧長、圓C2上半圓弧AB的弧長、圓C3上半圓弧CD的弧長,則a、b、c的大小關(guān)系為(  )
A.b>a=cB.b=c>aC.b>a>cD.b>c>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=2cos2x-1,x∈R.
(Ⅰ)求f($\frac{π}{6}$)的值;
(Ⅱ)求函數(shù)f(x)的最小正周期;
(Ⅲ)設(shè)g(x)=f($\frac{π}{4}$-x)+$\sqrt{3}$cos2x,求g(x)的值域.

查看答案和解析>>

同步練習(xí)冊答案