A. | 1 | B. | 2 | C. | $\frac{5}{2}$ | D. | $\frac{3}{2}$ |
分析 設(shè)M(m,2-m),N(n,2-n),且m>n,運(yùn)用兩點(diǎn)的距離公式可得m-n=1,再由向量的數(shù)量積的坐標(biāo)表示,轉(zhuǎn)化為n的二次函數(shù),配方即可得到所求最小值.
解答 解:設(shè)M(m,2-m),N(n,2-n),且m>n,
由|MN|=$\sqrt{2}$,可得$\sqrt{(m-n)^{2}+(m-n)^{2}}$=$\sqrt{2}$,
可得m-n=1,即m=1+n,
則$\overrightarrow{OM}$•$\overrightarrow{ON}$=mn+(2-m)(2-n)=2mn+4-2(m+n)=2n(1+n)+4-2(1+2n)
=2(n2-n+1)=2[(n-$\frac{1}{2}$)2+$\frac{3}{4}$]≥$\frac{3}{2}$,
當(dāng)n=$\frac{1}{2}$,m=$\frac{3}{2}$時(shí),可得$\overrightarrow{OM}$•$\overrightarrow{ON}$的最小值為$\frac{3}{2}$,
故選:D.
點(diǎn)評(píng) 本題考查向量數(shù)量積的坐標(biāo)表示,注意運(yùn)用轉(zhuǎn)化思想,運(yùn)用二次函數(shù)的最值求法,考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 命題“?x0∈R,x02-x0≤0”的否定為“?x∈R,x2-x>0” | |
B. | 命題“在△ABC中,A>30°,則sinA>$\frac{1}{2}$”的逆否命題為真命題 | |
C. | 設(shè){an}是公比為q的等比數(shù)列,則“q>1”是“{an}為遞增數(shù)列”的充分必要條件 | |
D. | 若非零向量$\overrightarrow a$、$\overrightarrow b$滿足$|{\overrightarrow a+\overrightarrow b}|=|{\overrightarrow a}|+|{\overrightarrow b}$|,則$\overrightarrow a$與$\overrightarrow b$共線 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{4}{5}$ | B. | $\frac{4}{5}$ | C. | -$\frac{4}{5}$i | D. | $\frac{4}{5}$i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-1,8) | B. | (0,5] | C. | [-1,5) | D. | (0,8) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com