17.將函數(shù)f(x)=sin2x+$\sqrt{3}$cos2x的圖象向左平移φ(φ>0)個(gè)單位后,所得到的圖象關(guān)于y軸對(duì)稱(chēng),則φ的最小值為$\frac{π}{12}$.

分析 由兩角和的正弦化簡(jiǎn)y=$\sqrt{3}$cos2x+sin2x,平移后由函數(shù)為偶函數(shù)得到2φ+$\frac{π}{3}$=kπ+$\frac{π}{2}$,由此可求最小正數(shù)φ的值.

解答 解:∵y=$\sqrt{3}$cos2x+sin2x=2($\frac{\sqrt{3}}{2}$cos2x+$\frac{1}{2}$sin2x)=2sin(2x+$\frac{π}{3}$),
∴將函數(shù)y=$\sqrt{3}$cos2x+sin2x(x∈R)的圖象向左平移φ(φ>0)個(gè)長(zhǎng)度單位后,
所得到的圖象對(duì)應(yīng)的函數(shù)解析式為y=2sin(2x+2φ+$\frac{π}{3}$).
∵所得到的圖象關(guān)于y軸對(duì)稱(chēng),
∴y=2sin(2x+2φ+$\frac{π}{3}$)為偶函數(shù).
即2φ+$\frac{π}{3}$=kπ+$\frac{π}{2}$,φ=$\frac{kπ}{2}$+$\frac{π}{12}$,k∈Z.
當(dāng)k=0時(shí),φ的最小值為$\frac{π}{12}$.
故答案為:$\frac{π}{12}$.

點(diǎn)評(píng) 本題考查了y=Asin(ωx+φ)型函數(shù)的圖象平移,考查了三角函數(shù)奇偶性的性質(zhì),是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=4cos($\frac{π}{3}$-ωx)cosωx-1(ω>0)圖象的相鄰兩條對(duì)稱(chēng)軸之間的距離為$\frac{π}{2}$.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)在[0,2π]上的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知拋物線(xiàn)x2=4y的焦點(diǎn)為F,準(zhǔn)線(xiàn)為l,拋物線(xiàn)的對(duì)稱(chēng)軸與準(zhǔn)線(xiàn)交于點(diǎn)Q,P為拋物線(xiàn)上的動(dòng)點(diǎn),|PF|=m|PQ|,當(dāng)m最小時(shí),點(diǎn)P恰好在以F,Q為焦點(diǎn)的橢圓上,則橢圓的離心率為( 。
A.$3-2\sqrt{2}$B.$2-\sqrt{2}$C.$\sqrt{3}-\sqrt{2}$D.$\sqrt{2}-1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若關(guān)于x的方程x2-xlnx+2=k(x+2)在[$\frac{1}{2}$,+∞)上有兩解,則實(shí)數(shù)k的取值范圍為(  )
A.(1,$\frac{9}{10}$+$\frac{ln2}{5}$]B.(1,+∞)C.(1,$\frac{9}{10}$+$\frac{ln2}{5}$)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=alnx+x2-4x(a∈R).
(1)討論函數(shù)f(x)的單調(diào)區(qū)間;
(2)若A(x1,y1),B(x2,y2)(x2>x1>0)是曲線(xiàn)y=f(x)上的兩點(diǎn),x0=$\frac{{x}_{1}+{x}_{2}}{2}$,問(wèn):是否存在a,使得直線(xiàn)AB的斜率等于f′(x0)?若存在,求出a的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.若0<x1<x2<1,則( 。
A.ex2-ex1>lnx2-lnx1B.ex2-ex1<lnx2-lnx1
C.x2ex1>x1ex2D.x2ex1<x1ex2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知橢圓$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{2}$=1與拋物線(xiàn)y2=2px(p>0)交于A、B兩點(diǎn),|AB|=2,則p=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.在復(fù)平面內(nèi),復(fù)數(shù)z=$\frac{2i}{1+i}$(i為虛數(shù)單位)對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)M、N是直線(xiàn)x+y-2=0上的兩動(dòng)點(diǎn),且|MN|=$\sqrt{2}$,則$\overrightarrow{OM}$•$\overrightarrow{ON}$的最小值為(  )
A.1B.2C.$\frac{5}{2}$D.$\frac{3}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案