9.關(guān)于x的不等式組$\left\{\begin{array}{l}ax<1\\ x-a<0\end{array}$的解集不是空集,則實(shí)數(shù)a的取值范圍為[-1,+∞).

分析 分類討論,即可求出a的取值范圍

解答 解:根據(jù)題意,x-a<0的解為x<a,
當(dāng)a>0時(shí),ax<1的解為x<$\frac{1}{a}$,
此時(shí)解集顯然不為空集,
當(dāng)a=0時(shí),ax<1的解為R,
此時(shí)解集顯然不為空集,
當(dāng)a<0時(shí),ax<1的解為x>$\frac{1}{a}$,
∵關(guān)于x的不等式組$\left\{\begin{array}{l}ax<1\\ x-a<0\end{array}$的解集不是空集,
∴$\frac{1}{a}$≤a,
即a2≤1,
解得-1≤a<0,
綜上所述a的取值范圍為[-1,+∞)
故答案為:[-1,+∞).

點(diǎn)評(píng) 本題考查空集的性質(zhì)的運(yùn)用,注意結(jié)合題意,關(guān)鍵是分類討論,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=2x3-ax2+8.
(1)若f(x)<0對(duì)?x∈[1,2]恒成立,求實(shí)數(shù)a的取值范圍;
(2)是否存在整數(shù)a,使得函數(shù)g(x)=f(x)+4ax2-12a2x+3a3-8在區(qū)間(0,2)上存在極小值,若存在,求出所有整數(shù)a的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知f(x)是定義在R上的偶函數(shù),其導(dǎo)函數(shù)為f′(x),若f′(x)<f(x),且f(x+1)=f(3-x),f(2015)=2,則不等式f(x)<2ex-1的解集為(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在平面直角坐標(biāo)系中,當(dāng)P(x,y)不是原點(diǎn)時(shí),定義P的“伴隨點(diǎn)”為${P^'}(\frac{y}{{{x^2}+{y^2}}},\frac{-x}{{{x^2}+{y^2}}})$;當(dāng)P是原點(diǎn)時(shí),定義P的“伴隨點(diǎn)”為它自身,平面曲線C上所有點(diǎn)的“伴隨點(diǎn)”所構(gòu)成的曲線C′定義為曲線C的“伴隨曲線”,現(xiàn)有下列命題:
①若點(diǎn)A的“伴隨點(diǎn)”是點(diǎn)A′,則點(diǎn)A′的“伴隨點(diǎn)”是點(diǎn)A;
②若曲線C關(guān)于x軸對(duì)稱,則其“伴隨曲線”C′關(guān)于y軸對(duì)稱;
③單位圓的“伴隨曲線”是它自身;
④一條直線的“伴隨曲線”是一條直線.
其中真命題的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知a,b,c是實(shí)數(shù),寫出命題“若a+b+c=0,則a,b,c中至少有兩個(gè)負(fù)數(shù)”的等價(jià)命題:若a,b,c中至多有1個(gè)非負(fù)數(shù),則a+b+c≠0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)=x2+ex,則f'(1)=2+e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若m=60,n=40,按照如圖所示的程序框圖運(yùn)行后,輸出的結(jié)果是(  )
A.$\frac{1}{200}$B.200C.20D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知兩點(diǎn)A(6,5)為圓心,$\sqrt{10}$為半徑的圓的標(biāo)準(zhǔn)方程為( 。
A.(x-6)2+(y-5)2=10B.(x+6)2+(y+5)2=10C.(x-5)2+(y-6)2=$\sqrt{10}$D.(x+5)2+(y+6)2=$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.三角形的三條高的長(zhǎng)度分別為$\frac{1}{13}$,$\frac{1}{10}$,$\frac{1}{5}$,則此三角形的形狀是鈍角三角形.

查看答案和解析>>

同步練習(xí)冊(cè)答案