9.一個(gè)四棱錐的側(cè)棱長都相等,底面是正方形,且其正視圖為如圖所示的等腰三角形,則該四棱錐的體積是( 。
A.$\frac{{4\sqrt{3}}}{3}$B.$2\sqrt{3}$C.$4\sqrt{3}$D.$\frac{8}{3}$

分析 由題意該四棱錐是底面邊長為2,高為$\sqrt{3}$的正四棱錐,由此能求出該四棱錐的體積.

解答 解:由題意該四棱錐是底面邊長為2,高為$\sqrt{3}$的正四棱錐,
即四棱錐S-ABCD中,底面ABCD是邊長為2的正方形,
SO⊥平面ABCD,O是正方形ABCD的中心,且SO=$\sqrt{3}$,
∴該四棱錐的體積:
V=$\frac{1}{3}×{S}_{正方形ABCD}×SO$=$\frac{1}{3}×{2}^{2}×\sqrt{3}$=$\frac{4\sqrt{3}}{3}$.
故選:A.

點(diǎn)評 本題考查四棱錐的體積的求法,考查空間中線線、線面、面面間的位置關(guān)系的合理運(yùn)用,考查推理論證能力、運(yùn)算求解能力、空間想象能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想、數(shù)形結(jié)合思想,考查創(chuàng)新意識、應(yīng)用意識,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.?dāng)?shù)列{an}中,${a_{n+1}}+{(-1)^n}{a_n}=2n-1$,則數(shù)列{an}前16項(xiàng)和等于( 。
A.130B.132C.134D.136

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知數(shù)列{an}中,a1=2,a2=3,其前n項(xiàng)和Sn滿足Sn+1+Sn-1=2Sn+1,其中n≥2,n∈N*.
(1)求證:數(shù)列{an}為等差數(shù)列,并求其通項(xiàng)公式;
(2)設(shè)bn=an•2-n,Tn為數(shù)列{bn}的前n項(xiàng)和.
①求Tn的表達(dá)式,并判斷Tn的單調(diào)性;
②求使Tn>2的n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知點(diǎn)P為函數(shù)f(x)=lnx的圖象上任意一點(diǎn),點(diǎn)Q為圓${[{x-(e+\frac{1}{e})}]^2}+{y^2}=\frac{1}{4}$上任意一點(diǎn),則線段PQ長度的最小值為( 。
A.$\frac{{e-\sqrt{{e^2}-1}}}{e}$B.$\frac{{2\sqrt{{e^2}+1}-e}}{2e}$C.$\frac{{\sqrt{{e^2}+1}-e}}{2e}$D.$e+\frac{1}{e}-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知數(shù)據(jù)x1,x2,…,xn的方差為2,若數(shù)據(jù)ax1+b,ax2+b,…,axn+b的方差為6,則a的值為±$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.下列說法:
①正切函數(shù)y=tanx在定義域內(nèi)是增函數(shù);
②函數(shù)$f(x)=cos(\frac{2}{3}x+\frac{π}{2})$是奇函數(shù);
③$x=\frac{π}{8}$是函數(shù)$y=sin(2x+\frac{5}{4}π)$的一條對稱軸方程;
其中正確的是??②③.(寫出所有正確答案的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)變量x,y滿足$\left\{\begin{array}{l}{2x+y-6≥0}\\{x+2y-6≥0}\\{y≥0}\end{array}\right.$,則目標(biāo)函數(shù)z=2x+3y的最小值為(  )
A.6B.10C.12D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知復(fù)數(shù)z=a+$\sqrt{3}$i(a∈R)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)位于第二象限,且|z|=2,則復(fù)數(shù)z等于(  )
A.-1+$\sqrt{3}$iB.1+$\sqrt{3}$iC.-1+$\sqrt{3}$i或1+$\sqrt{3}$iD.-2+$\sqrt{3}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.復(fù)數(shù)z=$\frac{-i}{1+2i}$在復(fù)平面對應(yīng)的點(diǎn)位于第三象限.

查看答案和解析>>

同步練習(xí)冊答案