4.一個體積為12$\sqrt{3}$的正棱柱的三視圖,如圖所示,則該三棱柱的高為( 。
A.3B.$3\sqrt{3}$C.$2\sqrt{3}$D.4

分析 由已知三視圖得到正三棱柱的底面高為2$\sqrt{3}$的等邊三角形,設(shè)棱柱高為x,由體積是12$\sqrt{3}$,得到關(guān)于高的等式解之.

解答 解:由幾何體的三視圖得到幾何體是正三棱柱的底面高為2$\sqrt{3}$的等邊三角形,
所以底面邊長為$\frac{2\sqrt{3}}{sin60°}$=4,
設(shè)棱柱高為x,由體積是12$\sqrt{3}$,所以$\frac{\sqrt{3}}{4}×{4}^{2}h=12\sqrt{3}$,解得h=3;
故選A.

點評 本題考查了幾何體的三視圖;由三視圖正確還原幾何體是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知向量$\overrightarrow{p}$、$\overrightarrow{q}$滿足|$\overrightarrow{p}$=2$\sqrt{2}$,|$\overrightarrow{q}$|=3,$\overrightarrow{p}$、$\overrightarrow{q}$的夾角為$\frac{π}{4}$,如圖,若$\overrightarrow{AB}$=$\overrightarrow{p}$+2$\overrightarrow{q}$,$\overrightarrow{AC}$=$\overrightarrow{p}$-3$\overrightarrow{q}$,$\overrightarrow{AD}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$),則|$\overrightarrow{AD}$|為|(  )
A.$\frac{15}{2}$B.$\frac{\sqrt{15}}{2}$C.$\frac{17}{2}$D.$\frac{\sqrt{17}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=$\frac{{e}^{x}}{x}$+a(x-lnx),其中e為自然對數(shù)的底.
(Ⅰ)當(dāng)a>0時,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)在區(qū)間($\frac{1}{2}$,2)上有三個不同的極值點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知$\overrightarrow{a}$,$\overrightarrow$是非零向量,f(x)=($\overrightarrow{a}$x+$\overrightarrow$)•($\overrightarrow$x-$\overrightarrow{a}$)的圖象是一條直線,|$\overrightarrow{a}$+$\overrightarrow$|=2,|$\overrightarrow{a}$|=1,則f(x)=2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知點A,B,C在球O的表面上且A=$\frac{π}{3}$,b=1,c=3.三菱錐O-ABC的體積為$\frac{\sqrt{2}}{2}$,則球O的表面積為( 。
A.16πB.32πC.20πD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.216-20πB.216-26πC.216-60πD.216-54π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知曲線C:(x-y)2+y2=1在矩陣$A[{\begin{array}{l}2&{-2}\\ 0&1\end{array}}]$對應(yīng)的變換下得到曲線C',則曲線C'的方程為$\frac{{x}^{2}}{4}+{y}^{2}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.某直三棱柱的側(cè)棱長等于2,底面為等腰直角三角形且腰長為1,則該直三棱柱的外接球的表面積是( 。
A.πB.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若x,y滿足條件$\left\{\begin{array}{l}{2x-y≤1}\\{x+y≥2}\\{y-x≤2}\end{array}\right.$,目標(biāo)函數(shù)z=-3x+2y的最小值為-1.

查看答案和解析>>

同步練習(xí)冊答案