1.對(duì)于非零向量$\overrightarrow a,\overrightarrow b,\overrightarrow c$,下列命題正確的是( 。
A.若${λ_1}\overrightarrow a+{λ_2}\overrightarrow b=\overrightarrow 0({λ_1},{λ_2}∈R)$,則λ12=0
B.若$\overrightarrow a∥\overrightarrow b$,則$\overrightarrow a$在$\overrightarrow b$上的投影為$|\overrightarrow a|$
C.若$\overrightarrow a⊥\overrightarrow b$,則$\overrightarrow a•$$\overrightarrow b={(\overrightarrow a•\overrightarrow b)^2}$
D.若$\overrightarrow a•\overrightarrow c=\overrightarrow b•\overrightarrow c$,則$\overrightarrow a$=$\overrightarrow b$

分析 由$\overrightarrow{a}$,$\overrightarrow$共線,λ12=0不成立,可判斷A;討論$\overrightarrow{a}$,$\overrightarrow$同向或反向共線,即可判斷B;
由向量垂直的條件:數(shù)量積為0,即可判斷C;由向量數(shù)量積的定義和垂直的條件,即可判斷D.

解答 解:對(duì)于A,若${λ_1}\overrightarrow a+{λ_2}\overrightarrow b=\overrightarrow 0({λ_1},{λ_2}∈R)$,且$\overrightarrow{a}$,$\overrightarrow$不共線,則λ12=0;若$\overrightarrow{a}$,$\overrightarrow$共線,λ12=0不成立,故A錯(cuò);
對(duì)于B,若$\overrightarrow{a}$∥$\overrightarrow$,則$\overrightarrow a$在$\overrightarrow b$上的投影為±$|\overrightarrow a|$,($\overrightarrow{a}$,$\overrightarrow$同向?yàn)檎,反向(yàn)樨?fù)),故B錯(cuò);
對(duì)于C,若$\overrightarrow a⊥\overrightarrow b$,則$\overrightarrow a•$$\overrightarrow b={(\overrightarrow a•\overrightarrow b)^2}$=0,故C正確;
對(duì)于D,若$\overrightarrow{a}$•$\overrightarrow{c}$=$\overrightarrow$•$\overrightarrow{c}$,則($\overrightarrow{a}$-$\overrightarrow$)•$\overrightarrow{c}$=0,可得($\overrightarrow{a}$-$\overrightarrow$)⊥$\overrightarrow{c}$,或$\overrightarrow{a}$=$\overrightarrow$或$\overrightarrow{c}$=$\overrightarrow{0}$,故D錯(cuò).
故選:C.

點(diǎn)評(píng) 本題考查向量的共線和垂直的條件,考查向量的投影和數(shù)量積的定義,考查轉(zhuǎn)化思想和判斷能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)fn(x)=$\sum_{i=1}^{n}$|x-i|,n∈N*.
(1)解不等式:f2(x)<x+1;
(2)求f5(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知復(fù)數(shù)z=i(i為虛數(shù)單位),則z2017的共軛復(fù)數(shù)是( 。
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.對(duì)命題“?x0∈R,x${\;}_{0}^{2}$-2x0+4>0”的否定正確的是( 。
A.$?{x_0}∈R\;,\;{x_0}^2-2{x_0}+4>0$B.?x∈R,x2-2x+4≤0
C.?x∈R,x2-2x+4>0D.?x∈R,x2-2x+4≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知全集為R,集合A={x|y=log2(1-2-x)},B={x|y=$\sqrt{-{x}^{2}+6x-8}$},則A∩∁RB=( 。
A.{x|x≤0}B.{x|2≤x≤4}C.{x|0<x<2或x>4}D.{x|0<x≤2或x≥4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若a=${∫}_{-1}^{1}$xdx,b=${∫}_{0}^{π}$sinxdx,則a+b的值是( 。
A.-2B.0C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=(x-1)sinx+2cosx+x.
( I)求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程.
( II)求函數(shù)f(x)在區(qū)間[0,π]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.化簡:(1)sin(-α)sin(π-α)-2cos2(-α)+1=-cos2α;
(2)$\frac{cos(α-π)•tan(4π-α)}{sin(-2π-α)}$=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)f(x)=$\sqrt{3x-xlgx}$的定義域?yàn)椋ā 。?table class="qanwser">A.(1000,+∞)B.(0,1000]C.(0,$\frac{1}{1000}$]D.(-∞,1000]

查看答案和解析>>

同步練習(xí)冊(cè)答案