【題目】為了實(shí)現(xiàn)綠色發(fā)展,避免浪費(fèi)能源,某市政府計(jì)劃對(duì)居民用電實(shí)行階梯收費(fèi)的方法.為此,相關(guān)部門隨機(jī)調(diào)查了20戶居民六月分的月用電量(單位:kwh)和家庭月收入(單位:方元)月用電量數(shù)據(jù)如下18,63,72,82,93,98,106,10,18,130,134,139,147,163,180,194,212,237,260,324家庭月收入數(shù)據(jù)如下0.21,0.24,0.35,0.40,0.52,0.60,0.58,0.65,0.65,0.63,0.68,0.80,0.83,0.93,0.97,0.96,1.1,1.2,1.5,1.8
(1)根據(jù)國(guó)家發(fā)改委的指示精神,該市實(shí)行3階階梯電價(jià),使7%的用戶在第一檔,電價(jià)為0.56元/kwh,20%的用戶在第二檔,電價(jià)為0.61元/kwh,5%的用戶在第三檔,電價(jià)為0.86元/kwh,試求出居民用電費(fèi)用Q與用電量x間的函數(shù)關(guān)系式;
(2)以家庭月收入t為橫坐標(biāo),電量x為縱坐標(biāo)作出散點(diǎn)圖(如圖)求出x關(guān)于t的回歸直線方程(系數(shù)四舍五入保留整數(shù));
(3)小明家庭月收入7000元,按上述關(guān)系,估計(jì)小明家月支出電費(fèi)多少元?
【答案】1);(2);(3)72.8.
【解析】
(1)因?yàn)?/span>, 所以從用電量數(shù)據(jù)中得到第一檔的臨界值為第15個(gè)樣本,即180,第二檔的臨界值為第19個(gè)樣本,即260.由此,可求居民用電費(fèi)用與用電量間的函數(shù)關(guān)系式;
(2)計(jì)算可得,,代入公式可求關(guān)于的回歸直線方程
(3)把代入回歸直線方程求出,再把代入(1)函數(shù)解析式即可.
(1)因?yàn)?/span>,
所以從用電量數(shù)據(jù)中得到第一檔的臨界值為第15個(gè)樣本,即180,
第二檔的臨界值為第19個(gè)樣本,即260.因此,
所以,
(2)由于,
,
,
所以,
從而回歸直線方程為.
(3)當(dāng)時(shí),,
,所以,小明家月支出電費(fèi)72.8元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是圓的直徑,垂直圓所在的平面,是圓上的一點(diǎn).
(1)求證:平面 平面;
(2)若,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列和滿足若為等比數(shù)列,且
(1)求和;
(2)設(shè),記數(shù)列的前項(xiàng)和為
①求;
②求正整數(shù) k,使得對(duì)任意均有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,四棱錐中,平面平面, , , .
(1)證明:在線段上存在一點(diǎn),使得平面;
(2)若,在(1)的條件下,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是等邊三角形, 是邊上的動(dòng)點(diǎn)(含端點(diǎn)),記,.
(1)求的最大值;
(2)若,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) 在上單調(diào)遞增,
(1)若函數(shù)有實(shí)數(shù)零點(diǎn),求滿足條件的實(shí)數(shù)的集合;
(2)若對(duì)于任意的時(shí),不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù),則下列結(jié)論錯(cuò)誤的是( )
A. 是偶函數(shù) B. 的值域是
C. 方程的解只有 D. 方程的解只有
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知m,n為兩條不同的直線,,為兩個(gè)不同的平面,則下列命題中正確的有
,,, ,
,, ,
A. 0個(gè) B. 1個(gè) C. 2個(gè) D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)設(shè),當(dāng)時(shí),求函數(shù)的定義域,判斷并證明函數(shù)的奇偶性;
(2)是否存在實(shí)數(shù),使函數(shù)在上單調(diào)遞減,且最小值為1?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com