【題目】為了實(shí)現(xiàn)綠色發(fā)展,避免浪費(fèi)能源,某市政府計(jì)劃對(duì)居民用電實(shí)行階梯收費(fèi)的方法.為此,相關(guān)部門隨機(jī)調(diào)查了20戶居民六月分的月用電量(單位:kwh)和家庭月收入(單位:方元)月用電量數(shù)據(jù)如下1863,72,82,93,98106,10,18,130,134,139,147,163,180,194212,237260,324家庭月收入數(shù)據(jù)如下0.210.24,0.35,0400.520.60,0.580.65,0650.63,0.680.80,0.830.93,0.970.96,1.11.2,1.5,1.8

1)根據(jù)國(guó)家發(fā)改委的指示精神,該市實(shí)行3階階梯電價(jià),使7%的用戶在第一檔,電價(jià)為0.56/kwh20%的用戶在第二檔,電價(jià)為0.61/kwh,5%的用戶在第三檔,電價(jià)為0.86/kwh,試求出居民用電費(fèi)用Q與用電量x間的函數(shù)關(guān)系式;

2)以家庭月收入t為橫坐標(biāo),電量x為縱坐標(biāo)作出散點(diǎn)圖(如圖)求出x關(guān)于t的回歸直線方程(系數(shù)四舍五入保留整數(shù));

3)小明家庭月收入7000元,按上述關(guān)系,估計(jì)小明家月支出電費(fèi)多少元?

【答案】1);(2);(372.8.

【解析】

1)因?yàn)?/span>, 所以從用電量數(shù)據(jù)中得到第一檔的臨界值為第15個(gè)樣本,即180,第二檔的臨界值為第19個(gè)樣本,即260.由此,可求居民用電費(fèi)用與用電量間的函數(shù)關(guān)系式;

2)計(jì)算可得,,代入公式可求關(guān)于的回歸直線方程

(3)把代入回歸直線方程求出,再把代入(1)函數(shù)解析式即可.

1)因?yàn)?/span>,

所以從用電量數(shù)據(jù)中得到第一檔的臨界值為第15個(gè)樣本,即180,

第二檔的臨界值為第19個(gè)樣本,即260.因此,

所以,

2)由于,

,

,

所以,

從而回歸直線方程為

(3)當(dāng)時(shí),,

,所以,小明家月支出電費(fèi)72.8元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是圓的直徑,垂直圓所在的平面,是圓上的一點(diǎn).

1)求證:平面 平面;

2)若,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列滿足為等比數(shù)列,且

1)求

2)設(shè),記數(shù)列的前項(xiàng)和為

①求;

②求正整數(shù) k,使得對(duì)任意均有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,四棱錐中,平面平面 , ,

(1)證明:在線段上存在一點(diǎn),使得平面;

(2)若,在(1)的條件下,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是等邊三角形, 邊上的動(dòng)點(diǎn)(含端點(diǎn)),記,.

(1)求的最大值;

(2)若,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) 上單調(diào)遞增,

(1)若函數(shù)有實(shí)數(shù)零點(diǎn),求滿足條件的實(shí)數(shù)的集合;

(2)若對(duì)于任意的時(shí),不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù),則下列結(jié)論錯(cuò)誤的是( )

A. 是偶函數(shù) B. 的值域是

C. 方程的解只有 D. 方程的解只有

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知m,n為兩條不同的直線,,為兩個(gè)不同的平面,則下列命題中正確的有  

,,,

,, ,

A. 0個(gè) B. 1個(gè) C. 2個(gè) D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)設(shè),當(dāng)時(shí),求函數(shù)的定義域,判斷并證明函數(shù)的奇偶性;

2)是否存在實(shí)數(shù),使函數(shù)上單調(diào)遞減,且最小值為1?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案