2.若非零向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=|$\overrightarrow$|,(2$\overline{a}$$-\overrightarrow$)$•\overrightarrow$=0,則$\overrightarrow{a}$與$\overrightarrow$的夾角為(  )
A.30°B.120°C.60°D.150°

分析 利用向量的數(shù)量積化簡求解即可.

解答 解:非零向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=|$\overrightarrow$|,(2$\overline{a}$$-\overrightarrow$)$•\overrightarrow$=0,
可得:2$\overline{a}$$•\overrightarrow$$-\overrightarrow$$•\overrightarrow$=0,2cos$<\overrightarrow{a},\overrightarrow>$=1,
解得$\overrightarrow{a}$與$\overrightarrow$的夾角為:60°.
故選:C.

點評 本題考查向量數(shù)量積的運算,向量的夾角的求法,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知命題p:實數(shù)x滿足|ax+2|≥1,其中a>0,命題q:實數(shù)x滿足log3(x2-2x-2)≥0
(Ⅰ)若a=1,且p∧q為真,求實數(shù)x的取值范圍
(Ⅱ)若q是¬p的必要不充分條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知奇函數(shù)f(x)滿足f(x+1)=-f(x),當(dāng)x∈(0,1)時,f(x)=-2x,則f(log210)等于$\frac{8}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,某校高一(1)班全體男生的一次數(shù)學(xué)測試的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如圖甲所示,據(jù)此解答如下問題:
(1)求該班全體男生的人數(shù)及分數(shù)在[80,90)之間的男生人數(shù);
(2)根據(jù)頻率分布直方圖,估計該班全體男生的數(shù)學(xué)平均成績(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表).(3)從分數(shù)在[80,100]中抽取兩個男生,求抽取的兩男生分別來自[80,90)、[90,100]的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知數(shù)列{an}的前n項和為Sn,且$\frac{1}{{a}_{n}+1}$=$\frac{2}{{a}_{n+1}+1}$,a2=1,則S7等于( 。
A.112B.113C.120D.127

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知數(shù)列{an}滿足a1+2a2+22a3+…+2n-1an=n(n∈N*),又等差數(shù)列{bn}滿足b1=a1,b1+1,b2+1,b5-1成等比數(shù)列.
(1)求數(shù)列{an}和{bn}的通項公式;
(2)求數(shù)列{anbn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若過雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)右頂點A且與其中一條漸近線平行,又與另一條漸近線交于點B,滿足三角形AOB的面積為$\frac{{a}^{2}}{4}$,則該雙曲線的離心率e為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{\sqrt{5}}{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知向量$\overrightarrow{a}$=(1,3),$\overrightarrow$=(cosα,sinα)且$\overrightarrow{a}$∥$\overrightarrow$,則tanα=( 。
A.3B.-3C.$\frac{1}{3}$D.$-\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.△ABC中,角A,B,C的對邊分別為a,b,c,且滿足a2+c2-b2=ac,${\overrightarrow{CA}^{\;}}{•^{\;}}\overrightarrow{AB}>0$,$b=\sqrt{3}$,則a+c的取值范圍是( 。
A.(2,3)B.$(\sqrt{3},3)$C.(1,3)D.(1,3]

查看答案和解析>>

同步練習(xí)冊答案