13.已知奇函數(shù)f(x)滿(mǎn)足f(x+1)=-f(x),當(dāng)x∈(0,1)時(shí),f(x)=-2x,則f(log210)等于$\frac{8}{5}$.

分析 先判斷l(xiāng)og210的范圍,利用函數(shù)的周期為2轉(zhuǎn)化到區(qū)間(-1,0)內(nèi),再根據(jù)奇函數(shù)的定義和對(duì)數(shù)的運(yùn)算性質(zhì)求出f(log210)的值.

解答 解:∵3<log210<4,
∴-1<-4+log210<0,
∵f(x+1)=-f(x),
∴f(x+2)=-f(x+1)=f(x),
∴函數(shù)f(x)是以2為周期的奇函數(shù),
∴f(log210)=f(-4+log210)=-f(4-log210),
∵當(dāng)x∈(0,1)時(shí),f(x)=-2x,
∴f(4-log210)=-${2}^{4{-log}_{2}10}$=-$\frac{8}{5}$,
即f(log210)=$\frac{8}{5}$,
故答案為:$\frac{8}{5}$.

點(diǎn)評(píng) 本題考查了函數(shù)奇偶性和周期性的應(yīng)用,根據(jù)周期性把自變量的范圍轉(zhuǎn)化到與題意有關(guān)的區(qū)間上,再由奇偶性聯(lián)系f(x)=-f(-x),利用對(duì)數(shù)的運(yùn)算性質(zhì)求出函數(shù)值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知數(shù)列{an}為等比數(shù)列,若a7=$\frac{5}{2}$,公比q=2${\;}^{\frac{1}{5}}$,則a3(a1+2a11+a21)的值為( 。
A.36B.6C.$\frac{625}{16}$D.$\frac{25}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.在極坐標(biāo)系中,圓C的方程為ρ=2acosθ(a≠θ),以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,設(shè)直線(xiàn)l的參數(shù)方程為$\left\{\begin{array}{l}{x=3t+1}\\{y=4t+3}\end{array}\right.$(t為參數(shù))
(1)求圓C的直角坐標(biāo)方程和直線(xiàn)l的普通方程
(2)若直線(xiàn)l與圓C恒有兩個(gè)公共點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.定理:若函數(shù)y=f(x)的圖象關(guān)于直線(xiàn)x=a對(duì)稱(chēng),且方程f(x)=0有n個(gè)根,則這n個(gè)根之和為na(n∈N*).
利用上述定理,求解下列問(wèn)題:
(1)已知函數(shù)g(x)=sin2x+1,x∈[-$\frac{5π}{2}$,4π],設(shè)函數(shù)y=g(x)的圖象關(guān)于直線(xiàn)x=a對(duì)稱(chēng),求a的值及方程g(x)=0的所有根之和;
(2)若關(guān)于x的方程2x4+2x+2-x-cosx-m2=0在實(shí)數(shù)集上有唯一的解,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.下列說(shuō)法:
①函數(shù)f(x)=sin($\frac{1}{6}$x$-\frac{π}{3}$)的一條對(duì)稱(chēng)軸方程是x=2π;
②十進(jìn)制數(shù)68(10)轉(zhuǎn)化為三進(jìn)制數(shù)是2112(3);
③函數(shù)f(x)=sin($\frac{π}{6}$-2x)的增區(qū)間是[$-\frac{π}{6}-kπ,\frac{π}{3}-kπ$],k∈Z;
④若△ABC中三個(gè)內(nèi)角滿(mǎn)足sinC=2sinAcosB,則△ABC是等腰三角形.
其中正確的有②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.△ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b、c,已知a=bcosC+$\sqrt{3}$csinB.
(1)求角B;
(2)若b=1,c=$\sqrt{3}$,求△ABC的面積S△ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{1+lo{g}_{2}(2-x),x<1}\\{2x-1,x≥1}\end{array}\right.$,則f(-2)+f(2)=(  )
A.3B.6C.5D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.若非零向量$\overrightarrow{a}$,$\overrightarrow$滿(mǎn)足|$\overrightarrow{a}$|=|$\overrightarrow$|,(2$\overline{a}$$-\overrightarrow$)$•\overrightarrow$=0,則$\overrightarrow{a}$與$\overrightarrow$的夾角為(  )
A.30°B.120°C.60°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.某校為評(píng)估新教改對(duì)教學(xué)的影響,挑選了水平相當(dāng)?shù)膬蓚(gè)平行班進(jìn)行對(duì)比試驗(yàn).甲班采用創(chuàng)新教法,乙班仍采用傳統(tǒng)教法,一段時(shí)間后進(jìn)行水平測(cè)試,成績(jī)結(jié)果全部落在[60,100]區(qū)間內(nèi)(滿(mǎn)分100分),并繪制頻率分布直方圖如圖,兩個(gè)班人數(shù)均為60人,成績(jī)80分及以上為優(yōu)良.

(1)根據(jù)以上信息填好下列2×2聯(lián)表,并判斷出有多大的把握認(rèn)為學(xué)生成績(jī)優(yōu)良與班級(jí)有關(guān)?
是否優(yōu)良
班級(jí)
優(yōu)良(人數(shù))非優(yōu)良(人數(shù))合計(jì)
合計(jì)
(2)以班級(jí)分層抽樣,抽取成績(jī)優(yōu)良的5人參加座談,現(xiàn)從5人中隨機(jī)選2人來(lái)作書(shū)面發(fā)言,求2人都來(lái)自甲班的概率.
下面的臨界值表供參考:
 P(x2?k) 0.10 0.05 0.010
 k 2.706 3.841 6.635
(以下臨界值及公式僅供參考${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,n=a+b+c+d)

查看答案和解析>>

同步練習(xí)冊(cè)答案