13.如圖所示為函數(shù)f(x)=2sin(ωx+φ)(ω>0,|φ|≤$\frac{π}{2}$)的部分圖象,其中A,B兩點(diǎn)之間的距離為5,則函數(shù)g(x)=2cos(φx+ω)圖象的對(duì)稱(chēng)軸為( 。
A.x=12k-8(k∈Z)B.x=6k-2(k∈Z)C.x=6k-4(k∈Z)D.x=12k-2(k∈Z)

分析 由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出ω,由特殊法的坐標(biāo)作圖求出φ的值,可得g(x)的解析式,再利用余弦函數(shù)的圖象的對(duì)稱(chēng)性,求得函數(shù)g(x)=2cos(φx+ω)圖象的對(duì)稱(chēng)軸.

解答 解:根據(jù)函數(shù)f(x)=2sin(ωx+φ)(ω>0,|φ|≤$\frac{π}{2}$)的部分圖象,可得A=2,
且2sinφ=1,∴sinφ=$\frac{1}{2}$,∴φ=$\frac{π}{6}$.
再根據(jù)AB2=25=42+${(\frac{1}{2}•\frac{2π}{ω})}^{2}$,∴ω=$\frac{π}{3}$,∴f(x)=2sin($\frac{π}{3}$x+$\frac{π}{6}$),
故函數(shù)g(x)=2cos(φx+ω)=2cos($\frac{π}{6}$x+$\frac{π}{3}$).
令$\frac{π}{6}$x+$\frac{π}{3}$=kπ,k∈Z,求得x=6k-2,
故選:B.

點(diǎn)評(píng) 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出ω,由特殊法的坐標(biāo)作圖求出φ的值,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.對(duì)?x∈(0,$\frac{1}{3}$),8x≤logax+1恒成立,則實(shí)數(shù)a的取值范圍是(  )
A.(0,$\frac{2}{3}$)B.(0,$\frac{1}{2}$]C.[$\frac{1}{3}$,1)D.[$\frac{1}{2}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知數(shù)列{an}滿(mǎn)足:對(duì)于?m,n∈N*,都有an•am=an+m,且${a_1}=\frac{1}{2}$,那么a5=( 。
A.$\frac{1}{32}$B.$\frac{1}{16}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.將一枚硬幣連續(xù)拋擲n次,若使得至少有一次正面向上的概率不小于$\frac{15}{16}$,則n的最小值為(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知點(diǎn)P是長(zhǎng)軸長(zhǎng)為$2\sqrt{2}$的橢圓Q:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$上異于頂點(diǎn)的一個(gè)動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),A為橢圓的右頂點(diǎn),點(diǎn)M為線段PA的中點(diǎn),且直線PA與OM的斜率之積恒為$-\frac{1}{2}$.
(1)求橢圓Q的方程;
(2)設(shè)過(guò)左焦點(diǎn)F1且不與坐標(biāo)軸垂直的直線l交橢圓于C,D兩點(diǎn),線段CD的垂直平分線與x軸交于點(diǎn)G,點(diǎn)G橫坐標(biāo)的取值范圍是$[-\frac{1}{4},0)$,求|CD|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知過(guò)點(diǎn)(-2,0)的直線與圓O:x2+y2-4x=0相切與點(diǎn)P(P在第一象限內(nèi)),則過(guò)點(diǎn)P且與直線$\sqrt{3}$x-y=0垂直的直線l的方程為( 。
A.x+$\sqrt{3}$y-2=0B.x+$\sqrt{3}$y-4=0C.$\sqrt{3}$x+y-2=0D.x+$\sqrt{3}$y-6=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知四棱錐P-ABCD的底面ABCD是平行四邊形,PA⊥平面ABCD,PA=AB=AC=2,AD=2$\sqrt{2}$,點(diǎn)E是線段AB上靠近B點(diǎn)的三等分點(diǎn),點(diǎn)F、G分別在線段PD、PC上.
(Ⅰ)證明:CD⊥AG;
(Ⅱ)若三棱錐E-BCF的體積為$\frac{1}{6}$,求$\frac{FD}{PD}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,在三棱柱ABC-A1B1C1中,D,E分別是B1C1、BC的中點(diǎn),∠BAC=90°,AB=AC=2,A1A=4,A1E=$\sqrt{14}$.
(Ⅰ)證明:A1D⊥平面A1BC;
(Ⅱ)求二面角A-BD-B1的平面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知a,b∈R,則“b≠0”是“復(fù)數(shù)a+bi是純虛數(shù)”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案