A. | 2 | B. | 2$\sqrt{3}$ | C. | $\frac{7\sqrt{2}}{6}$ | D. | $\frac{7\sqrt{2}}{3}$ |
分析 求得圓的圓心和半徑,運(yùn)用拋物線的定義可得A,C,F(xiàn)三點(diǎn)共線時取得最小值,且有A為CF的中點(diǎn),設(shè)出A,C,F(xiàn)的坐標(biāo),代入拋物線的方程可得p,由拋物線的定義可得a,求得C到直線OA的距離,運(yùn)用圓的弦長公式計算即可得到所求值.
解答 解:圓C:x2+(y-4)2=a2的圓心C(0,4),半徑為a,則|AC|+|AF|=2a,
由拋物線M上一動點(diǎn)到其準(zhǔn)線與到點(diǎn)C的距離之和的最小值為2a,
由拋物線的定義可得動點(diǎn)到焦點(diǎn)與到點(diǎn)C的距離之和的最小值為2a,
可得A,C,F(xiàn)三點(diǎn)共線時取得最小值,且有A為CF的中點(diǎn),
由C(0,4),F(xiàn)($\frac{p}{2}$,0),可得A($\frac{p}{4}$,2),
代入拋物線的方程可得,4=2p•$\frac{p}{4}$,解得p=2$\sqrt{2}$,
即有a=$\frac{p}{4}$+$\frac{p}{2}$=$\frac{3\sqrt{2}}{2}$,A($\frac{\sqrt{2}}{2}$,2),
可得C到直線OA:y=2$\sqrt{2}$x的距離為d=$\frac{丨0-4丨}{\sqrt{(2\sqrt{2})^{2}+1}}$=$\frac{4}{3}$,
可得直線OA被圓C所截得的弦長為2$\sqrt{(\frac{3\sqrt{2}}{2})^{2}-(\frac{4}{3})^{2}}$=$\frac{7\sqrt{2}}{3}$,
直線OA被圓C所截得的弦長為$\frac{7\sqrt{2}}{3}$,
故選D
點(diǎn)評 本題考查圓的弦長的求法,注意運(yùn)用拋物線的定義和三點(diǎn)共線和最小,同時考查弦長公式和點(diǎn)到直線的距離公式的運(yùn)用,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{8\sqrt{3}}{9}$ | B. | $\frac{16\sqrt{3}}{9}$ | C. | $\frac{32\sqrt{3}}{9}$ | D. | $\frac{64\sqrt{3}}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 2$\sqrt{3}$ | C. | 4$\sqrt{3}$ | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{1}{6}$ | C. | $\frac{1}{12}$ | D. | $\frac{1}{24}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2或$\frac{1}{2}$ | B. | 2 | C. | $\frac{1}{2}$ | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com