14.已知A是拋物線M:y2=2px(p>0)與圓C在第一象限的公共點(diǎn),其中圓心C(0,4),點(diǎn)A到M的焦點(diǎn)F的距離與C的半徑相等,M上一動點(diǎn)到其準(zhǔn)線與到點(diǎn)C的距離之和的最小值等于C的直徑,O為坐標(biāo)原點(diǎn),則直線OA被圓C所截得的弦長為( 。
A.2B.2$\sqrt{3}$C.$\frac{7\sqrt{2}}{6}$D.$\frac{7\sqrt{2}}{3}$

分析 求得圓的圓心和半徑,運(yùn)用拋物線的定義可得A,C,F(xiàn)三點(diǎn)共線時取得最小值,且有A為CF的中點(diǎn),設(shè)出A,C,F(xiàn)的坐標(biāo),代入拋物線的方程可得p,由拋物線的定義可得a,求得C到直線OA的距離,運(yùn)用圓的弦長公式計算即可得到所求值.

解答 解:圓C:x2+(y-4)2=a2的圓心C(0,4),半徑為a,則|AC|+|AF|=2a,
由拋物線M上一動點(diǎn)到其準(zhǔn)線與到點(diǎn)C的距離之和的最小值為2a,
由拋物線的定義可得動點(diǎn)到焦點(diǎn)與到點(diǎn)C的距離之和的最小值為2a,
可得A,C,F(xiàn)三點(diǎn)共線時取得最小值,且有A為CF的中點(diǎn),
由C(0,4),F(xiàn)($\frac{p}{2}$,0),可得A($\frac{p}{4}$,2),
代入拋物線的方程可得,4=2p•$\frac{p}{4}$,解得p=2$\sqrt{2}$,
即有a=$\frac{p}{4}$+$\frac{p}{2}$=$\frac{3\sqrt{2}}{2}$,A($\frac{\sqrt{2}}{2}$,2),
可得C到直線OA:y=2$\sqrt{2}$x的距離為d=$\frac{丨0-4丨}{\sqrt{(2\sqrt{2})^{2}+1}}$=$\frac{4}{3}$,
可得直線OA被圓C所截得的弦長為2$\sqrt{(\frac{3\sqrt{2}}{2})^{2}-(\frac{4}{3})^{2}}$=$\frac{7\sqrt{2}}{3}$,
直線OA被圓C所截得的弦長為$\frac{7\sqrt{2}}{3}$,
故選D

點(diǎn)評 本題考查圓的弦長的求法,注意運(yùn)用拋物線的定義和三點(diǎn)共線和最小,同時考查弦長公式和點(diǎn)到直線的距離公式的運(yùn)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知拋物線y2=4x,過其焦點(diǎn)F的直線l與拋物線分別交于A、B兩點(diǎn)(A在第一象限內(nèi)),$\stackrel{→}{AF}$=3$\stackrel{→}{FB}$,過AB的中點(diǎn)且垂直于l的直線與x軸交于點(diǎn)G,則三角形ABG的面積為( 。
A.$\frac{8\sqrt{3}}{9}$B.$\frac{16\sqrt{3}}{9}$C.$\frac{32\sqrt{3}}{9}$D.$\frac{64\sqrt{3}}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在△ABC中,A,B,C對應(yīng)邊分別為a,b,c,且a=1,b=$\sqrt{2},A={30°}$,則B=45°或135°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在△ABC中,A、B、C的對邊分別為a、b、c,若B=$\frac{π}{3}$,b=6,sinA-2sinC=0,則a=( 。
A.3B.2$\sqrt{3}$C.4$\sqrt{3}$D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x},x≥3}\\{f(x+1),x<3}\end{array}\right.$f(log23)的值為( 。
A.$\frac{1}{3}$B.$\frac{1}{6}$C.$\frac{1}{12}$D.$\frac{1}{24}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知等比數(shù)列{an}為遞增數(shù)列,若a1>0,且2(an+2-an)=3an+1,則數(shù)列{an}的公比q=( 。
A.2或$\frac{1}{2}$B.2C.$\frac{1}{2}$D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.執(zhí)行如圖所示的程序框圖,若輸入x的值為1,輸出n的值為N,則在區(qū)間[-1,4]上隨機(jī)選取一個數(shù)M,M≥N-1的概率為(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知f(x)=lnx-x+m(m為常數(shù)).
(1)求f(x)的極值;
(2)設(shè)m>1,記f(x+m)=g(x),已知x1,x2為函數(shù)g(x)是兩個零點(diǎn),求證:x1+x2<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知數(shù)列{an}的前n項和Sn=n2+pn,且a2,a5,a10成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)若bn=1+$\frac{5}{{a}_{n}•{a}_{n+1}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

同步練習(xí)冊答案