11.曲線y=sinx+1在點(diǎn)(0,1)處的切線方程為x-y+1=0.

分析 先對(duì)函數(shù)y=sinx+1進(jìn)行求導(dǎo),再根據(jù)導(dǎo)數(shù)的幾何意義求出曲線y=sinx+1在點(diǎn)x=0處的切線斜率,由點(diǎn)斜式方程進(jìn)而可得到切線方程.

解答 解:∵y′=cosx,
∴切線的斜率k=y′|x=0=1,
∴切線方程為y-1=x-0,
即x-y+1=0.
故答案為:x-y+1=0.

點(diǎn)評(píng) 本題主要考查導(dǎo)數(shù)的幾何意義,考查函數(shù)的求導(dǎo)運(yùn)算,直線的點(diǎn)斜式方程,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.運(yùn)行下列程序,當(dāng)輸入數(shù)值-2時(shí),輸出結(jié)果是( 。
A.7B.3C.0D.-16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知三個(gè)命題p,q,m中只有一個(gè)是真命題,課堂上老師給出了三個(gè)判斷:
A:p是真命題;B:p∨q是假命題;C:m是真命題.
老師告訴學(xué)生三個(gè)判斷中只有一個(gè)是錯(cuò)誤的,那么三個(gè)命題p,q,m中的真命題是m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)$f(x)=4cosωx•sin(ωx+\frac{π}{4})$(ω>0)的最小正周期為π.
(Ⅰ)求ω的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.函數(shù)f(x)=$\sqrt{{2}^{x}-\frac{1}{2}}$+$\frac{3}{x+1}$的定義域?yàn)閧x|x>-1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.一個(gè)多面體的直觀圖和三視圖如圖所示,M是AB的 中點(diǎn),一只蜜蜂在該幾何體內(nèi)自由飛舞,則它飛入幾 何體F-AMCD內(nèi)的概率為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.定義域?yàn)閇a,b]的函數(shù)y=f(x)圖象的兩個(gè)端點(diǎn)為A、B,向量$\overrightarrow{ON}$=λ$\overrightarrow{OA}$+(1-λ)$\overrightarrow{OB}$,M(x,y)是f(x)圖象上任意一點(diǎn),其中x=λa+(1-λ)b,λ∈[0,1]=.若不等式|MN|≤k恒成立,則稱函數(shù)f(x)在[a,b]上滿足“k范圍線性近似”,其中最小的正實(shí)數(shù)k稱為該函數(shù)的線性近似閥值.則定義在[1,2]上的函數(shù)y=sin$\frac{πx}{3}$與y=x-$\frac{1}{x}$的線性近似閥值分別是( 。
A.1-$\frac{\sqrt{3}}{2}$,$\frac{3}{2}$-$\sqrt{2}$B.1+$\frac{\sqrt{3}}{2}$,$\frac{3}{2}$+$\sqrt{2}$C.1-$\sqrt{2}$,1+$\sqrt{2}$D.2-$\sqrt{2}$,2+$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.函數(shù)$f(x)=\frac{sinx}{|sinx|}+\frac{2cosx}{|cosx|}+\frac{3tanx}{|tanx|}$的值域?yàn)锳,則集合A的子集個(gè)數(shù)為( 。
A.4B.8C.16D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知正項(xiàng)等比數(shù)列{an}中有$\root{21}{{a}_{1993}•{a}_{1994}•{a}_{1995}…{a}_{2013}}$=$\root{4005}{{a}_{1}•{a}_{2}•{a}_{3}…{a}_{4005}}$,則在等差數(shù)列{bn}中,類似的正確的結(jié)論有$\frac{_{1993}+_{1994}+…+_{2013}}{21}$=$\frac{_{1}+_{2}+…+_{4005}}{4005}$..

查看答案和解析>>

同步練習(xí)冊(cè)答案