20.如圖,網(wǎng)格紙的小正方形的邊長(zhǎng)是1,粗線表示一正方體被某平面截得的幾何體的三視圖,則該幾何體的體積為( 。
A.2B.4C.6D.8

分析 由題意,直觀圖如圖所示,由圖可知該幾何體的體積為為正方體的一半.

解答 解:由題意,直觀圖如圖所示,由圖可知該幾何體的體積為為正方體的一半,即為$\frac{1}{2}$×2×2×2=4.
故選:B

點(diǎn)評(píng) 本題考查由三視圖求體積,考查學(xué)生的計(jì)算能力,確定幾何體的形狀是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知數(shù)列{an}中,a1=1,a3=4.
(Ⅰ)若數(shù)列{an}是等差數(shù)列,求a11的值;
(Ⅱ)若數(shù)列{$\frac{1}{1+{a}_{n}}$}是等差數(shù)列,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)函數(shù)$f(x)=-\frac{1}{3}{x}^{3}+x$在(t,10-t2)上有最大值,則實(shí)數(shù)t的取值范圍為( 。
A.$(-3,-\sqrt{6})$B.$(-2,-\sqrt{3})$C.[-2,1)D.(-2,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖,在四棱柱ABCD-A1B1C1D1中,底面ABCD和側(cè)面BCC1B1都是矩形,E是CD的中點(diǎn),D1E⊥CD,AB=2BC=2.
(1)求證:BC⊥D1E;
(2)若平面BCC1B1與平面BED1所成的銳二面角的大小為$\frac{π}{3}$,求線段D1E的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.《九章算術(shù)》中,將底面是直角三角形的直三棱柱稱為“塹堵”,已知某“塹堵”的三視圖如圖所示,俯視圖中虛線平分矩形的面積,則該“塹堵”外接球的體積為$\frac{8\sqrt{2}π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$\frac{1}{2}+\frac{π}{2}$B.$1+\frac{π}{2}$C.1+πD.2+π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.在△ABC中,三內(nèi)角A,B,C的對(duì)邊分別為a,b,c.
(1)若c=$\sqrt{6},A={45°}$,a=2,求C,b;
(2)若a=btanA,且B為鈍角,證明:B-A=$\frac{π}{2}$,并求sinA+sinC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.二面角α-l-β為60°,異面直線a、b分別垂直于α、β,則a與b所成角的大小是60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.祖暅著《綴術(shù)》有云:“緣冪勢(shì)既同,則積不容異”,這就是著名的祖暅原理,如圖1,現(xiàn)有一個(gè)半徑為R的實(shí)心球,以該球某條直徑為中心軸挖去一個(gè)半徑為r的圓柱形的孔,再將余下部分熔鑄成一個(gè)新的實(shí)心球,則新實(shí)心球的半徑為$\root{3}{\frac{2{R}^{3}-3{r}^{2}\sqrt{{R}^{2}-{r}^{2}}}{2}}$(如圖2,勢(shì)為h時(shí)冪為S=π(R2-r2-h2))

查看答案和解析>>

同步練習(xí)冊(cè)答案