分析 (1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;
(2)求出函數(shù)的導(dǎo)數(shù),問題轉(zhuǎn)化為a=-$\frac{1}{x}$在(1,e)有解,求出a的范圍即可.
解答 解:(1)a=-$\frac{1}{2}$時,f(x)=-$\frac{1}{2}$x+lnx,
f′(x)=-$\frac{1}{2}$+$\frac{1}{x}$=$\frac{2-x}{2x}$,
令f′(x)>0,解得:1<x<2,
令f′(x)<0,解得:2<x<e,
故f(x)在(1,2)遞增,在(2,e)遞減;
(2)f′(x)=a+$\frac{1}{x}$=$\frac{ax+1}{x}$,
若f(x)有極值,只需ax+1=0在(1,e)有解,
即a=-$\frac{1}{x}$在(1,e)有解,
故-1<a<-$\frac{1}{e}$.
點評 本題考查了函數(shù)的單調(diào)性問題,考查導(dǎo)數(shù)的應(yīng)用以及轉(zhuǎn)化思想,是一道中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | -71 | C. | 64 | D. | 199 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $f({x+\frac{π}{4}})$是奇函數(shù) | B. | $({\frac{π}{4},0})$為f(x)的一個對稱中心 | ||
C. | f(x)在$({-\frac{3π}{4},-\frac{π}{4}})$上單調(diào)遞增 | D. | f(x)在(0,$\frac{π}{2}$)上單調(diào)遞減 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com