9.已知函數(shù)f(x)=ax+lnx,x∈(1,e).
(1)當(dāng)a=-$\frac{1}{2}$時,求f(x)的單調(diào)區(qū)間;
(2)若f(x)有極值,求實數(shù)a的取值范圍.

分析 (1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;
(2)求出函數(shù)的導(dǎo)數(shù),問題轉(zhuǎn)化為a=-$\frac{1}{x}$在(1,e)有解,求出a的范圍即可.

解答 解:(1)a=-$\frac{1}{2}$時,f(x)=-$\frac{1}{2}$x+lnx,
f′(x)=-$\frac{1}{2}$+$\frac{1}{x}$=$\frac{2-x}{2x}$,
令f′(x)>0,解得:1<x<2,
令f′(x)<0,解得:2<x<e,
故f(x)在(1,2)遞增,在(2,e)遞減;
(2)f′(x)=a+$\frac{1}{x}$=$\frac{ax+1}{x}$,
若f(x)有極值,只需ax+1=0在(1,e)有解,
即a=-$\frac{1}{x}$在(1,e)有解,
故-1<a<-$\frac{1}{e}$.

點評 本題考查了函數(shù)的單調(diào)性問題,考查導(dǎo)數(shù)的應(yīng)用以及轉(zhuǎn)化思想,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)(2-x)6=a0+a1(1+x)+a2(1+x)2+…+a6(1+x)6,則a0+a1+a2+a3+a4+a5+a6等于(  )
A.4B.-71C.64D.199

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知曲線C1的極坐標(biāo)方程為ρ2cos2θ=18,曲線C2的極坐標(biāo)方程為θ=$\frac{π}{6}$,曲線C1,C2相交于A,B兩點.
(1)求A,B兩點的極坐標(biāo);
(2)曲線C1與直線$\left\{\begin{array}{l}{x=2+\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.$(t為參數(shù))分別相交于M,N兩點,求線段MN的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)函數(shù)f(x)=($\frac{1}{2}$)10-ax,其中a為常數(shù),且f(3)=$\frac{1}{16}$.
(1)求a的值;
(2)若f(x)≥4,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.f(x)=ex-ax2-(a+1)x-1,a∈R,(e為自然對數(shù)的底數(shù))
(1)a=0時,求f(x)的極值;
(2)若?x0∈[0,1],使得f′(x)≥b成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)x1,x2,…,x10為1,2,…,10的一個排列,則滿足對任意正整數(shù)m,n,且1≤m<n≤10,都有xm+m≤xn+n成立的不同排列的個數(shù)為512.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)f(x)=2sin(2x+$\frac{π}{3}$+φ)(|φ|<$\frac{π}{2}$)的圖象向左平移$\frac{π}{2}$個單位后關(guān)于y軸對稱,則以下判斷不正確的是(  )
A.$f({x+\frac{π}{4}})$是奇函數(shù)B.$({\frac{π}{4},0})$為f(x)的一個對稱中心
C.f(x)在$({-\frac{3π}{4},-\frac{π}{4}})$上單調(diào)遞增D.f(x)在(0,$\frac{π}{2}$)上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{x-y≥0}\\{x+y≥0}\\{2x+y≤1}\end{array}\right.$,記z=x+3y的最小值為k,則函數(shù)f(x)=ex+k-2的圖象恒過定點(2,-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.某小區(qū)一號樓共有7層,每層只有1家住戶,已知任意相鄰兩層樓的住戶在同一天至多一家有快遞,且任意相鄰三層樓的住戶在同一天至少一家有快遞,則在同一天這7家住戶有無快遞的可能情況共有種12.

查看答案和解析>>

同步練習(xí)冊答案