相關(guān)習(xí)題
 0  237089  237097  237103  237107  237113  237115  237119  237125  237127  237133  237139  237143  237145  237149  237155  237157  237163  237167  237169  237173  237175  237179  237181  237183  237184  237185  237187  237188  237189  237191  237193  237197  237199  237203  237205  237209  237215  237217  237223  237227  237229  237233  237239  237245  237247  237253  237257  237259  237265  237269  237275  237283  266669 

科目: 來源: 題型:解答題

18.已知函數(shù)f(x)=$\sqrt{3}$sinxcosx+cos2x
(I)求函數(shù)f(x)的最小正周期;
(II)若-$\frac{π}{2}$<α<0,f(α)=$\frac{5}{6}$,求sin2α的值.

查看答案和解析>>

科目: 來源: 題型:解答題

17.某中學(xué)舉行了一次“環(huán)保知識競賽”,全校學(xué)生參加了這次競賽,為了了解本次競賽成績情況,從中抽取了部分學(xué)生的成績(得分取正整數(shù),滿分為100分)作為樣本進行統(tǒng)計,請根據(jù)下面尚未完成并有局部污損的頻率分布表和頻率分布直方圖(如圖所示)解決下列問題:
 組別 分組 頻數(shù) 頻率
 第1組[50,60) 8 0.16
 第2組[60,70) a
 第3組[70,80) 20 0.40
 第4組[80,90)  0.08
 第5組[90,100) 2 b
 合計   
(1)寫出a,b,x,y的值.
(2)在選取的樣本中,從競賽成績是80分以上(含80分)的同學(xué)中隨機抽取2名同學(xué)到廣場參加環(huán)保知識的志愿宣傳活動.
①求所抽取的2名同學(xué)中至少有1名同學(xué)的成績在[90,100]內(nèi)的概率;
②求所抽取的2名同學(xué)來自同一組的概率.

查看答案和解析>>

科目: 來源: 題型:填空題

16.經(jīng)過原點且到點A(1,1)的距離是$\sqrt{2}$的直線方程為x+y=0..

查看答案和解析>>

科目: 來源: 題型:填空題

15.已知圓O的方程為x2+y2=4,過圓外一點P(3,$\sqrt{7}$)作圓O的兩條切線,切點分別為T1和T2,則$\overrightarrow{P{T}_{1}}$•$\overrightarrow{P{T}_{2}}$=6.

查看答案和解析>>

科目: 來源: 題型:解答題

14.已知邊長為a的正方形ABCD外有一點P,且PA⊥平面ABCD,PA=a,求二面角B-PA-C和P-BC-A的大。

查看答案和解析>>

科目: 來源: 題型:填空題

13.兩條曲線的參數(shù)方程分別是$\left\{\begin{array}{l}{x=co{s}^{2}θ-1}\\{y=2+si{n}^{2}θ}\end{array}\right.$(θ為參數(shù))和$\left\{\begin{array}{l}{x=3cost}\\{y=2sint}\end{array}\right.$(t為參數(shù)),則其交點個數(shù)為1.

查看答案和解析>>

科目: 來源: 題型:填空題

12.7名志愿者中有3名女生,從其中安排6人在周六、周日兩天參加社區(qū)公益活動,若每天安排3人,則兩天中恰好各有1名女生的概率為$\frac{9}{35}$(用數(shù)值表示).

查看答案和解析>>

科目: 來源: 題型:選擇題

11.在△ABC中,sin2A十sin2B十sin2C=2$\sqrt{3}$sinAsinBsinC,則△ABC的形狀是( 。
A.直角三角形B.銳角三角形C.鈍角三角形D.正三角形

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知直線m:x=-4,圓M:x2+y2+2x-8=0,P為平面內(nèi)一動點,若點P到圓心M的距離是到直線m距離的一半.
(1)動點P的軌跡是什么曲線?寫出該曲線的標準方程;
(2)設(shè)動點P的軌跡為曲線F,過點E(4,-3)作直線l與曲線F交于C、D兩點,并與直線x-y-1=0相交于點Q,問:$\frac{1}{|EC|}$、$\frac{1}{|EQ|}$、$\frac{1}{|ED|}$是否成等差數(shù)列?

查看答案和解析>>

科目: 來源: 題型:解答題

9.設(shè)命題p:實數(shù)k滿足:方程$\frac{{x}^{2}}{k-1}$+$\frac{{y}^{2}}{7-a}$=1表示焦點在y軸上的橢圓;
命題q,實數(shù)k滿足:方程(4-k)x2+(k-2)y2=1不表示雙曲線.
(1)若命題q為真命題,求k的取值范圍;
(2)若p是q的必要不充分條件,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案