相關(guān)習(xí)題
 0  238016  238024  238030  238034  238040  238042  238046  238052  238054  238060  238066  238070  238072  238076  238082  238084  238090  238094  238096  238100  238102  238106  238108  238110  238111  238112  238114  238115  238116  238118  238120  238124  238126  238130  238132  238136  238142  238144  238150  238154  238156  238160  238166  238172  238174  238180  238184  238186  238192  238196  238202  238210  266669 

科目: 來源: 題型:填空題

9.已知i為虛數(shù)單位,復(fù)數(shù)z滿足$\frac{z}{i}+4=3i$,則復(fù)數(shù)z的模為5.

查看答案和解析>>

科目: 來源: 題型:解答題

8.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過點(diǎn)(1,$\frac{\sqrt{3}}{2}$),且離心率為$\frac{\sqrt{3}}{2}$
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn)P(4,0),橢圓內(nèi)部是否存在一個(gè)定點(diǎn),過此點(diǎn)的直線交橢圓于M,N兩點(diǎn),且$\overrightarrow{PM}$•$\overrightarrow{PN}$=12恒成立,若存在,求出此點(diǎn),若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

7.如圖所示,在直角梯形ABCD中,AB∥CD,∠ABC=90°,CD=BC=1,點(diǎn)E為AD邊上的中點(diǎn),過點(diǎn)D作DF∥BC交AB于點(diǎn)F,現(xiàn)將此直角梯形沿DF折起,使得A-FD-B為直二面角,如圖乙所示.
(1)求證:AB∥平面CEF;
(2)若AF=$\sqrt{3}$,求點(diǎn)A到平面CEF的距離.

查看答案和解析>>

科目: 來源: 題型:解答題

6.若數(shù)列{an}滿足$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=d(n∈N*,d為常數(shù)),則稱數(shù)列{an}為調(diào)和數(shù)列,現(xiàn)有一調(diào)和數(shù)列{bn}滿足b1=1,b2=$\frac{1}{2}$.
(1)求{bn}的通項(xiàng)公式;
(2)若數(shù)列cn=$\frac{_{n}}{n+2}$,求{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目: 來源: 題型:填空題

5.在ABC中,角A,B,C的對邊分別為a,b,c,若cosA=$\frac{4}{5}$,B=$\frac{π}{3}$,a=3,則b=$\frac{5\sqrt{3}}{2}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

4.要得到函數(shù)y=sinxcosx+$\sqrt{3}$cos2x-$\frac{\sqrt{3}}{2}$的圖象,可將函數(shù)y=sin2x的圖象( 。
A.向左平移$\frac{π}{3}$個(gè)單位B.向右平移$\frac{π}{3}$個(gè)單位
C.向左平移$\frac{π}{6}$個(gè)單位D.向右平移$\frac{π}{6}$個(gè)單位

查看答案和解析>>

科目: 來源: 題型:選擇題

3.在長為5的線段AB上任取一點(diǎn)P,以AP為邊長作等邊三角形,則此三角形的面積介于$\sqrt{3}$和4$\sqrt{3}$的概率為(  )
A.$\frac{4}{5}$B.$\frac{3}{5}$C.$\frac{2}{5}$D.$\frac{1}{5}$

查看答案和解析>>

科目: 來源: 題型:選擇題

2.以下三個(gè)命題中,真命題的個(gè)數(shù)有(  )個(gè)
①若$\frac{1}{a}$<$\frac{1}$,則a<b;②若a>b>c,則a|c|>b|c|;③函數(shù)f(x)=x+$\frac{1}{x}$有最小值2.
A.0B.1C.2D.3

查看答案和解析>>

科目: 來源: 題型:解答題

1.如圖所示,在直角梯形ABCD中,AB∥CD,∠ABC=90°,CD=BC=1,點(diǎn)E為AD邊上的中點(diǎn),過點(diǎn)D作DF∥BC交AB于點(diǎn)F,現(xiàn)將此直角梯形沿DF折起,使得A-FD-B為直二面角,如圖乙所示.
(1)求證:AB∥平面CEF;
(2)若二面角的余弦值為-$\frac{\sqrt{30}}{10}$,求AF的長.

查看答案和解析>>

科目: 來源: 題型:解答題

20.新學(xué)年伊始,附中社團(tuán)開始招新.某高一新生對“大觀天文社”、“理科學(xué)社”、“水墨霓裳社”很感興趣.假設(shè)他能被這三個(gè)社團(tuán)接受的概率分別為$\frac{3}{4}$,$\frac{1}{2}$,$\frac{1}{3}$.
(1)求此新生被兩個(gè)社團(tuán)接受的概率;
(2)設(shè)此新生最終參加的社團(tuán)數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案