相關(guān)習(xí)題
 0  238601  238609  238615  238619  238625  238627  238631  238637  238639  238645  238651  238655  238657  238661  238667  238669  238675  238679  238681  238685  238687  238691  238693  238695  238696  238697  238699  238700  238701  238703  238705  238709  238711  238715  238717  238721  238727  238729  238735  238739  238741  238745  238751  238757  238759  238765  238769  238771  238777  238781  238787  238795  266669 

科目: 來源: 題型:填空題

18.如圖,正方體ABCD-A1B1C1D1的棱長為2,點P在正方形ABCD的邊界及其內(nèi)部運動.平面區(qū)域W由所有滿足${A_1}P≤\sqrt{5}$的點P組成,則W的面積是$\frac{π}{4}$;四面體P-A1BC的體積的最大值是$\frac{4}{3}$.

查看答案和解析>>

科目: 來源: 題型:填空題

17.實數(shù)a,b滿足0<a≤2,b≥1.若b≤a2,則$\frac{a}$的取值范圍是$[\frac{1}{2},2]$.

查看答案和解析>>

科目: 來源: 題型:選擇題

16.復(fù)數(shù)z1=2+i,若復(fù)數(shù)z1,z2在復(fù)平面內(nèi)的對應(yīng)點關(guān)于虛軸對稱,則z1z2=(  )
A.-5B.5C.-3+4iD.3-4i

查看答案和解析>>

科目: 來源: 題型:解答題

15.如圖,已知三棱錐A-BPC中,AP⊥PC,AC⊥BC,M為AB的中點,D為PB的中點,且△PMB為正三角形.
(1)求證:BC⊥平面APC;
(2)若BC=6,AB=20,求三棱錐D-BCM的體積.

查看答案和解析>>

科目: 來源: 題型:解答題

14.為推行“新課堂”教學(xué)法,某化學(xué)老師分別用傳統(tǒng)教學(xué)和“新課堂”兩種不同的教學(xué)方式,在甲、乙兩個平行班進行教學(xué)實驗,為了解教學(xué)效果,期中考試后,分別從兩個班級中各隨機抽取20名學(xué)生的成績進行統(tǒng)計,作出的莖葉圖如圖,記成績不低于70分者為“成績優(yōu)良”.

(1)分別計算甲、乙兩班20個樣本中,化學(xué)分數(shù)前十的平均分,并據(jù)此判斷哪種教學(xué)方式的教學(xué)效果更
佳;
(2)甲、乙兩班40個樣本中,成績在60分以下的學(xué)生中任意選取2人,求這2人來自不同班級的概率;
(3)由以上統(tǒng)計數(shù)據(jù)填寫下面2×2列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.05的前提下認為“成績優(yōu)良與教學(xué)方式有關(guān)”?
甲班乙班總計
成績優(yōu)良101626
成績不優(yōu)良10414
總計202040
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+c)(b+d)(a+b)(c+d)},(n=a+b+c+d)$
獨立性檢驗臨界值表:
P(K2≥k00.100.050.0250.010
k02.7063.8415.0246.635

查看答案和解析>>

科目: 來源: 題型:填空題

13.若$cosα=\frac{3}{5},α∈(0,\frac{π}{2})$,則s$in(α-\frac{π}{6})$的值為$\frac{{4\sqrt{3}-3}}{10}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

12.若實數(shù)x,y滿足:$\left\{{\begin{array}{l}{y≥2x-2}\\{y≥-x+1}\\{y≤x+1}\end{array}}\right.$,則z=3x-y的最大值是( 。
A.3B.4C.5D.6

查看答案和解析>>

科目: 來源: 題型:填空題

11.已知當x∈R,[x]表示不超過x的最大整數(shù),稱y=[x]為取整函數(shù),例如[1.2]=1,[-2.3]=-3,若f(x)=[x],且偶函數(shù)g(x)=-(x-1)2+1(x≥0),則方程f(f(x))=g(x)的所有解之和為-3-$\sqrt{5}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

10.給出下列幾個命題:
①命題p:任意x∈R,都有cosx≤1,則?p:存在x0∈R,使得cosx0≤1;
②已知ξ~N(μ,δ2),若P(ξ>4)=P(ξ<2)成立,且P(ξ≤0)=0.2,則P(0<ξ<2)=0.6;
③空間任意一點O和三點A,B,C,則$\overrightarrow{OA}=3\overrightarrow{OB}=2\overrightarrow{OC}$是A,B,C三點共線的充分不必要條件;
④線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$對應(yīng)的直線一定經(jīng)過其樣本數(shù)據(jù)點(x1,y1),(x2,y2),…,(xn,yn)中的一個.
其中正確的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目: 來源: 題型:解答題

9.將邊長為2的正方形ABCD沿對角線BD折疊,使得平面ABD⊥平面CBD,AE⊥平面ABD,且AE=$\sqrt{2}$.
(1)求證:DE⊥AC.
(2)求DE與平面BEC所成角的正切值.
(3)直線BE上是否存在一點M,使得CM∥平面ADE?若存在,求點M的位置;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案