相關(guān)習(xí)題
 0  238871  238879  238885  238889  238895  238897  238901  238907  238909  238915  238921  238925  238927  238931  238937  238939  238945  238949  238951  238955  238957  238961  238963  238965  238966  238967  238969  238970  238971  238973  238975  238979  238981  238985  238987  238991  238997  238999  239005  239009  239011  239015  239021  239027  239029  239035  239039  239041  239047  239051  239057  239065  266669 

科目: 來源: 題型:解答題

16.節(jié)能減排以來,蘭州市100戶居民的月平均用電量(單位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分組的頻率分布直方圖如圖.
(1)求直方圖中x的值;
(2)求月平均用電量的眾數(shù)和中位數(shù);
(3)估計(jì)用電量落在[220,300)中的概率是多少?

查看答案和解析>>

科目: 來源: 題型:解答題

15.靜寧縣是甘肅蘋果栽培第一大縣,中國著名優(yōu)質(zhì)蘋果基地和重要蘋果出口基地.靜寧縣海拔高、光照充足、晝夜溫差大、環(huán)境無污染,適合種植蘋果.“靜寧蘋果”以色澤鮮艷、質(zhì)細(xì)汁多,酸甜適度,口感脆甜、貨架期長、極耐儲藏和長途運(yùn)輸而著名.為檢測一批靜寧蘋果,隨機(jī)抽取50個(gè),其重量(單位:克)的頻數(shù)分布表如下:
分組(重量)[80,85)[85,90)[90,95)[95,100)
頻數(shù)(個(gè))5102015
(1)根據(jù)頻數(shù)分布表計(jì)算蘋果的重量在[90,95)的頻率;
(2)用分層抽樣的方法從重量在[80,85)和[95,100)的蘋果中共抽取4個(gè),其中重量在[80,85)的有幾個(gè)?
(3)在(2)中抽出的4個(gè)蘋果中,任取2個(gè),求重量在[80,85)和[95,100)中各有1個(gè)的概率.

查看答案和解析>>

科目: 來源: 題型:解答題

14.已知函數(shù)f(x)=xlnx,g(x)=-x2+ax-2
(Ⅰ)求函數(shù)f(x)在[t,t+2](t>0)上的最小值;
(Ⅱ)若函數(shù)y=f(x)與y=g(x)的圖象恰有一個(gè)公共點(diǎn),求實(shí)數(shù)a的值.

查看答案和解析>>

科目: 來源: 題型:解答題

13.已知函數(shù)f(x)=lnx-ex+m在x=1處有極值,求m的值及f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目: 來源: 題型:解答題

12.某校高一(2)班共有60名同學(xué)參加期末考試,現(xiàn)將其數(shù)學(xué)學(xué)科成績(均為整數(shù))分成六個(gè)分?jǐn)?shù)段[40,50),[50,60),…,[90,100],畫出如圖所示的部分頻率分布直方圖,請觀察圖形信息,回答下列問題:
(1)求a并估計(jì)這次考試中該學(xué)科的眾數(shù)、平均值;
(2)現(xiàn)根據(jù)本次考試分?jǐn)?shù)分成下列六段(從低分段到高分段依次為第一組、第二組…第六組)為提高本班數(shù)學(xué)整體成績,決定組與組之間進(jìn)行幫扶學(xué)習(xí).若選出的兩組分?jǐn)?shù)之差不小于30分(以分?jǐn)?shù)段為依據(jù),不以具體學(xué)生分?jǐn)?shù)為依據(jù),如:[40,50),[70,80)這兩組分?jǐn)?shù)之差為30分),則稱這兩組為“最佳組合”,試求選出的兩組為“最佳組合”的概率.

查看答案和解析>>

科目: 來源: 題型:解答題

11.為了普及環(huán)保知識,共建美麗宜居城市,某市組織了環(huán)保知識競賽,隨機(jī)抽取了甲、乙兩單位中各5名職工的成績(單位:分)如下表:
甲單位8788919193
乙單位8589919293
(1)根據(jù)表中的數(shù)據(jù),分別求出甲、乙兩個(gè)單位這5名職工成績的平均數(shù)和方差,并判斷哪個(gè)單位的職工對環(huán)保知識掌握得更好;(參考公式:樣本數(shù)據(jù)x1,x2,…,xn的方差:${s^2}=\frac{1}{n}[{({x_1}-\overline x)^2}+{({x_2}-\overline x)^2}+…+{({x_n}-\overline x)^2}]$,其中$\overline x$為樣本平均數(shù))
(2)用簡單隨機(jī)抽樣法從乙單位5名職工中抽取2名,求抽取的2名職工的成績差的絕對值至少是4的概率.

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知函數(shù)$f(x)=\frac{1}{3}{x^3}+{x^2}+ax+1$,且曲線y=f(x)在點(diǎn)(0,1)處的切線斜率為-3.
(1)求f(x)單調(diào)區(qū)間;
(2)求f(x)的極值.

查看答案和解析>>

科目: 來源: 題型:填空題

9.已知函數(shù)$f(x)=\frac{x+1}{x^2},g(x)={log_2}x+m$,若對?x1∈[1,2],?x2[1,4],使得f(x1)≥g(x2),則m的取值范圍是(-∞,$\frac{3}{4}$].

查看答案和解析>>

科目: 來源: 題型:填空題

8.已知函數(shù)f(x)=ex+2cosx,則曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程x-y+3=0.

查看答案和解析>>

科目: 來源: 題型:解答題

7.已知函數(shù)f(x)=$\frac{x}{lnx}$+ax,x>1.
(1)若函數(shù)f(x)在$x={e^{\frac{1}{2}}}$處取得極值,求a的值;
(2)若方程(2x-m)lnx+x=0在(1,e]上有兩個(gè)不等實(shí)根,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案