相關(guān)習(xí)題
 0  239704  239712  239718  239722  239728  239730  239734  239740  239742  239748  239754  239758  239760  239764  239770  239772  239778  239782  239784  239788  239790  239794  239796  239798  239799  239800  239802  239803  239804  239806  239808  239812  239814  239818  239820  239824  239830  239832  239838  239842  239844  239848  239854  239860  239862  239868  239872  239874  239880  239884  239890  239898  266669 

科目: 來源: 題型:填空題

19.如圖,在△ABC中,D為BC的中點(diǎn),E為AD的中點(diǎn),直線BE與邊AC交于點(diǎn)F,若AD=BC=6,則$\overrightarrow{AB}•\overrightarrow{CF}$=-18.

查看答案和解析>>

科目: 來源: 題型:填空題

18.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,a4=10,S4=28,數(shù)列$\left\{{\frac{1}{{{S_n}+2}}}\right\}$的前n項(xiàng)和為Tn,則T2017=$\frac{2017}{4038}$.

查看答案和解析>>

科目: 來源: 題型:填空題

17.命題“?x>2,都有x2>2”的否定是?x0>2,x02≤2.

查看答案和解析>>

科目: 來源: 題型:填空題

16.雙曲線${y^2}-\frac{x^2}{3}=1$的準(zhǔn)線方程是y=$±\frac{1}{2}$.

查看答案和解析>>

科目: 來源: 題型:填空題

15.已知全集U=Z,集合A={x|0<x<5,x∈U},B={x|x≤1,X∈U},則A∩(∁UB)={2,3,4}.

查看答案和解析>>

科目: 來源: 題型:解答題

14.已知數(shù)列{an}和{bn}滿足:${a_{n+k}}-{({-1})^k}•{a_n}={b_n}(n∈{N^*})$.
(1)若$k=1,{a_1}=1,{b_n}={2^n}$,求數(shù)列{an}的通項(xiàng)公式;
(2)若k=4,bn=8,a1=4,a2=6,a3=8,a4=10.
①求證:數(shù)列{an}為等差數(shù)列;
②記數(shù)列{an}的前n項(xiàng)和為Sn,求滿足${({{S_n}+1})^2}-\frac{3}{2}{a_n}+33={k^2}$的所有正整數(shù)k和n的值.

查看答案和解析>>

科目: 來源: 題型:解答題

13.如圖,已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),點(diǎn)A,B分別是左、右頂點(diǎn),過右焦點(diǎn)F的直線MN(異于x軸)交于橢圓C于M、N兩點(diǎn).
(1)若橢圓C過點(diǎn)$({2,\frac{{4\sqrt{3}}}{3}})$,且右準(zhǔn)線方程為x=6,求橢圓C的方程;
(2)若直線BN的斜率是直線AM斜率的2倍,求橢圓C的離心率.

查看答案和解析>>

科目: 來源: 題型:解答題

12.某河道中過度滋長一種藻類,環(huán)保部門決定投入生物凈化劑凈化水體.因技術(shù)原因,第t分鐘內(nèi)投放凈化劑的路徑長度p=140-|t-40|(單位:m),凈化劑凈化水體的寬度q(單位:m)是時間t(單位:分鐘)的函數(shù):q(t)=1+a2t(a由單位時間投放的凈化劑數(shù)量確定,設(shè)a為常數(shù),且a∈N*).
(1)試寫出投放凈化劑的第t分鐘內(nèi)凈化水體面積S(t)(1≤t≤60,t∈N*)的表達(dá)式;
(2)求S(t)的最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

11.如圖在四棱錐P-ABCD中,底面ABCD為矩形,側(cè)面PAD⊥底面ABCD,PA⊥PC;
(1)求證:平面PAB⊥平面PCD;
(2)若過點(diǎn)B的直線l垂直平面PCD,求證:l∥平面PAD.

查看答案和解析>>

科目: 來源: 題型:填空題

10.設(shè)x+4y=4(y>0),0<t<z,則$\frac{{4{z^2}}}{|x|}+\frac{{|{x{z^2}}|}}{y}+\frac{12}{{t({z-t})}}$的最小值為24.

查看答案和解析>>

同步練習(xí)冊答案