相關(guān)習(xí)題
 0  240690  240698  240704  240708  240714  240716  240720  240726  240728  240734  240740  240744  240746  240750  240756  240758  240764  240768  240770  240774  240776  240780  240782  240784  240785  240786  240788  240789  240790  240792  240794  240798  240800  240804  240806  240810  240816  240818  240824  240828  240830  240834  240840  240846  240848  240854  240858  240860  240866  240870  240876  240884  266669 

科目: 來源: 題型:解答題

18.求下列函數(shù)的全微分.
(1)z=ln(3x-2y);
(2)z=$\frac{x+y}{x-y}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

17.設(shè)正弦曲線C按伸縮變換$\left\{\begin{array}{l}{x′=\frac{1}{2}x}\\{y′=3y}\end{array}\right.$后得到曲線方程為y′=sinx′,則正弦曲線C的周期為( 。
A.$\frac{π}{2}$B.πC.D.

查看答案和解析>>

科目: 來源: 題型:選擇題

16.直線$\left\{\begin{array}{l}{x=3+t}\\{y=2-2t}\end{array}\right.$(t為參數(shù))的斜率為(  )
A.2B.-2C.$\frac{3}{2}$D.-$\frac{3}{2}$

查看答案和解析>>

科目: 來源: 題型:選擇題

15.設(shè)y=x2-x,則x∈[0,1]上的最大值是( 。
A.0B.-$\frac{1}{4}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目: 來源: 題型:選擇題

14.函數(shù)y=tan($\frac{π}{4}$-x)的定義域是( 。
A.{x|x≠$\frac{π}{4}$}B.{x|x≠$\frac{π}{4}$,k∈Z}C.{x|x≠kπ+$\frac{π}{4}$,k∈Z}D.{x|x≠$\frac{3π}{4}$+kπ,k∈Z}

查看答案和解析>>

科目: 來源: 題型:解答題

13.已知以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為2ρsinθ+ρcosθ=10,曲線C1:$\left\{\begin{array}{l}{x=3cosα}\\{y=2sinα}\end{array}\right.$(α為參數(shù)).
(1)求曲線C1的普通方程;
(2)若點(diǎn)M在曲線C1上運(yùn)動(dòng),試求出M到曲線C的距離的最小值.

查看答案和解析>>

科目: 來源: 題型:選擇題

12.直線 $\left\{\begin{array}{l}{x=3-t}\\{y=4+t}\end{array}\right.$,(t 為參數(shù))上與點(diǎn) P(3,4)的距離等于 $\sqrt{2}$的點(diǎn)的坐標(biāo)是( 。
A.(4,3)B.(-4,5)或 (0,1)C.(2,5)D.(4,3)或 (2,5)

查看答案和解析>>

科目: 來源: 題型:解答題

11.函數(shù)f(x)=(log2x)2-log2x2+3,當(dāng)x∈[1,4]時(shí),f(x)的最大值為m,最小值為n
(1)若角α的始邊在x軸的非負(fù)半軸上,終邊經(jīng)過點(diǎn)P(m,n),求sinα+cosα的值;
(2)設(shè)$g(x)=mcos(nx+\frac{π}{m})-m$,求g(x)在$[0,\frac{π}{2}]$上的值域.

查看答案和解析>>

科目: 來源: 題型:解答題

10.(Ⅰ)已知a>0,b>0,a+b=1,求證:$\frac{1}{a}+\frac{1}+\frac{1}{ab}≥8$;
(Ⅱ)解不等式:|x-1|+|x+2|≥5.

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知圓C:(x-3)2+(y-4)2=4,直線l過定點(diǎn)A(1,0).
(1)若l與圓C相切,求l的方程.
(2)若l與圓C相交于P、Q兩點(diǎn),若$|PQ|=2\sqrt{2}$,求此時(shí)直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案