相關(guān)習(xí)題
 0  240906  240914  240920  240924  240930  240932  240936  240942  240944  240950  240956  240960  240962  240966  240972  240974  240980  240984  240986  240990  240992  240996  240998  241000  241001  241002  241004  241005  241006  241008  241010  241014  241016  241020  241022  241026  241032  241034  241040  241044  241046  241050  241056  241062  241064  241070  241074  241076  241082  241086  241092  241100  266669 

科目: 來源: 題型:解答題

19.某種產(chǎn)品在五個年度的廣告費用支出x萬元與銷售額y萬元的統(tǒng)計數(shù)據(jù)如下表:
x24568
y2035505580
(I)根據(jù)上表提供的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;
(II)據(jù)此模型估計某年度產(chǎn)品的銷售額欲達(dá)到108萬元,那么本年度收入的廣告費約為多少萬元?(回歸方程為y=${\;}_^{∧}$x+${\;}_{a}^{∧}$其中:${\;}_^{∧}$=$\frac{{\sum_{i=1}^{n}{x}_{i}y}_{i}-{{n}_{x}^{-}}_{y}^{-}}{\sum_{i=1}^{n}{x}_{i}^{2}-{{n}_{x}^{-}}^{2}}$,${\;}_{a}^{∧}$=${\;}_{y}^{∧}$-${\;}_^{∧}$${\;}_{x}^{-}$)

查看答案和解析>>

科目: 來源: 題型:解答題

18.某校從參加考試的學(xué)生中抽出60名學(xué)生,將其成績(均為整數(shù))分成六組[40,50),[50,60),…,[90,100]后畫出如圖部分頻率分布直方圖.觀察圖形的信息,回答下列問題:
(Ⅰ)求成績落在[70,80)上的頻率,并補(bǔ)全這個頻率分布直方圖;
(Ⅱ) 估計這次考試的及格率(60分及以上為及格)和平均分;
(Ⅲ) 從成績在[40,50)和[90,100]的學(xué)生中任選兩人,求他們在同一分?jǐn)?shù)段的概率.

查看答案和解析>>

科目: 來源: 題型:解答題

17.已知tanα,tanβ是方程4x2+5x-1=0的兩根,且$0<α<\frac{π}{2},\frac{π}{2}<β<π$.
(1)求tan(α+β)的值;
(2)求α+β的值.

查看答案和解析>>

科目: 來源: 題型:選擇題

16.已知關(guān)于x的一元二次方程x2+2bx+a2=0,若a是從區(qū)間[0,3]任取一個數(shù),b是從區(qū)間[0,2]任取的一個數(shù),則上述方程有實根的概率為(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目: 來源: 題型:解答題

15.社會公眾人物的言行一定程度上影響著年輕人的人生觀、價值觀.某媒體機(jī)構(gòu)為了解大學(xué)生對影視、歌星以及著名主持人方面的新聞(簡稱:“星聞”)的關(guān)注情況,隨機(jī)調(diào)查了某大學(xué)的200位大學(xué)生,得到信息如表:
男大學(xué)生女大學(xué)生
不關(guān)注“星聞”8040
關(guān)注“星聞”4040
(Ⅰ)從所抽取的200人內(nèi)關(guān)注“星聞”的大學(xué)生中,再抽取三人做進(jìn)一步調(diào)查,求這三人性別不全相同的概率;
(Ⅱ)是否有95%以上的把握認(rèn)為“關(guān)注‘星聞’與性別有關(guān)”,并說明理由;
(Ⅲ)把以上的頻率視為概率,若從該大學(xué)隨機(jī)抽取4位男大學(xué)生,設(shè)這4人中關(guān)注“星聞”的人數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望.
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}},n=a+b+c+d$.
P(K2≥k00.0500.0100.001
k03.8416.63510.828

查看答案和解析>>

科目: 來源: 題型:填空題

14.若x,y滿足條件$\left\{\begin{array}{l}{2x-y≤1}\\{x+y≥2}\\{y-x≤2}\end{array}\right.$,目標(biāo)函數(shù)z=-3x+2y的最小值為-1.

查看答案和解析>>

科目: 來源: 題型:選擇題

13.函數(shù)f(x)=ax-1-2(a>0,a≠1)的圖象恒過定點A,若點A在直線mx-ny-1=0上,其中m>0,n>0,則$\frac{1}{m}$+$\frac{2}{n}$的最小值為( 。
A.4B.5C.7D.3+2$\sqrt{2}$

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知過點A(0,1)的動直線l與圓C:x2+y2-4x-2y-3=0交于M,N兩點.
(Ⅰ)設(shè)線段MN的中點為P,求點P的軌跡方程;
(Ⅱ)若$\overrightarrow{OM}$•$\overrightarrow{ON}$=-2,求直線l的方程.

查看答案和解析>>

科目: 來源: 題型:選擇題

11.已知拋物線y2=x的焦點是橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{3}$=1的一個焦點,則橢圓的離心率為( 。
A.$\frac{\sqrt{37}}{37}$B.$\frac{\sqrt{13}}{13}$C.$\frac{1}{4}$D.$\frac{1}{7}$

查看答案和解析>>

科目: 來源: 題型:選擇題

10.已知直三棱柱ABC-A1B1C1中,AB=3,BC=AA1=2,∠ABC=$\frac{π}{3}$,則異面直線B1A與C1B所成角的余弦值為(  )
A.$\frac{\sqrt{13}}{13}$B.$\frac{\sqrt{13}}{26}$C.$\frac{\sqrt{13}}{52}$D.$\frac{\sqrt{26}}{52}$

查看答案和解析>>

同步練習(xí)冊答案