科目: 來源: 題型:
【題目】高鐵和航空的飛速發(fā)展不僅方便了人們的出行,更帶動了我國經(jīng)濟的巨大發(fā)展.據(jù)統(tǒng) 計,在2018年這一年內(nèi)從 市到市乘坐高鐵或飛機出行的成年人約為萬人次.為了 解乘客出行的滿意度,現(xiàn)從中隨機抽取人次作為樣本,得到下表(單位:人次):
滿意度 | 老年人 | 中年人 | 青年人 | |||
乘坐高鐵 | 乘坐飛機 | 乘坐高鐵 | 乘坐飛機 | 乘坐高鐵 | 乘坐飛機 | |
10分(滿意) | 12 | 1 | 20 | 2 | 20 | 1 |
5分(一般) | 2 | 3 | 6 | 2 | 4 | 9 |
0分(不滿意) | 1 | 0 | 6 | 3 | 4 | 4 |
(1)在樣本中任取個,求這個出行人恰好不是青年人的概率;
(2)在2018年從市到市乘坐高鐵的所有成年人中,隨機選取人次,記其中老年人出行的人次為.以頻率作為概率,求的分布列和數(shù)學期望;
(3)如果甲將要從市出發(fā)到市,那么根據(jù)表格中的數(shù)據(jù),你建議甲是乘坐高鐵還是飛機? 并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系xoy中,以坐標原點O為極點,x軸正半軸為極軸建立極坐標系。已知曲線C的極坐標方程為,過點的直線l的參數(shù)方程為(為參數(shù)),直線l與曲線C交于M、N兩點。
(1)寫出直線l的普通方程和曲線C的直角坐標方程:
(2)若成等比數(shù)列,求a的值。
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,已知四邊形BCDE為直角梯形,,,且,A為BE的中點將沿AD折到位置如圖,連結(jié)PC,PB構(gòu)成一個四棱錐.
Ⅰ求證;
Ⅱ若平面ABCD.
求二面角的大;
在棱PC上存在點M,滿足,使得直線AM與平面PBC所成的角為,求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】近年來,隨著網(wǎng)絡(luò)的普及和智能手機的更新?lián)Q代,各種方便的相繼出世,其功能也是五花八門.某大學為了調(diào)查在校大學生使用的主要用途,隨機抽取了名大學生進行調(diào)查,各主要用途與對應(yīng)人數(shù)的結(jié)果統(tǒng)計如圖所示,現(xiàn)有如下說法:
①可以估計使用主要聽音樂的大學生人數(shù)多于主要看社區(qū)、新聞、資訊的大學生人數(shù);
②可以估計不足的大學生使用主要玩游戲;
③可以估計使用主要找人聊天的大學生超過總數(shù)的.
其中正確的個數(shù)為( )
A.B.C.D.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓:()的左、右焦點分別為,,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切,點在橢圓上,,,
(1)求橢圓的方程;
(2)若直線:與橢圓交于,兩點,點,若,求斜率的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了迎接2019年的高考,某學校進行了第一次模擬考試,其中五個班的考試成績在500分以上的人數(shù)如下表,為班級,表示500分以上的人數(shù)
1 | 2 | 3 | 4 | 5 | |
20 | 25 | 30 | 30 | 25 |
(1)若給出數(shù)據(jù),班級與考試成績500以上的人數(shù),滿足回歸直線方程,求出該回歸直線方程;
(2)學校為了更好的提高學生的成績,了解一模的考試成績,從考試成績在500分以上1,3班學生中,利用分層抽樣抽取5人進行調(diào)研,再從選中的5人中,再選3名學生寫出“經(jīng)驗介紹”文章,則選的三名學生1班一名,3班2名的概率.
參考公式:,.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系中,已知曲線的參數(shù)方程為,以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求曲線與曲線兩交點所在直線的極坐標方程;
(2)若直線的極坐標方程為,直線與軸的交點為,與曲線相交于兩點,求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)的導(dǎo)函數(shù)是偶函數(shù),若方程在區(qū)間(其中為自然對數(shù)的底)上有兩個不相等的實數(shù)根,則實數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知曲線:和:(為參數(shù)).以原點為極點,軸的正半軸為極軸,建立極坐標系,且兩種坐標系中取相同的長度單位.
(1)求曲線的直角坐標方程和的方程化為極坐標方程;
(2)設(shè)與,軸交于,兩點,且線段的中點為.若射線與,交于,兩點,求,兩點間的距離.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知動圓恒過點,且與直線相切.
(1)求圓心的軌跡的方程;
(2)設(shè)是軌跡上橫坐標為2的點,的平行線交軌跡于,兩點,交軌跡在處的切線于點,問:是否存在實常數(shù)使,若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com