0  439585  439593  439599  439603  439609  439611  439615  439621  439623  439629  439635  439639  439641  439645  439651  439653  439659  439663  439665  439669  439671  439675  439677  439679  439680  439681  439683  439684  439685  439687  439689  439693  439695  439699  439701  439705  439711  439713  439719  439723  439725  439729  439735  439741  439743  439749  439753  439755  439761  439765  439771  439779  447090 

4.(2009·濟(jì)寧模擬) 魏晉南北朝時(shí)期,我國經(jīng)濟(jì)發(fā)展的突出特點(diǎn)是                     (  )

A.寺院經(jīng)濟(jì)占主導(dǎo)地位               B.北方經(jīng)濟(jì)發(fā)展較快 

C.南北經(jīng)濟(jì)發(fā)展趨于平衡              D.經(jīng)濟(jì)重心開始南移

答案  C

試題詳情

3.北方勞動(dòng)人民南遷對南方生產(chǎn)發(fā)展最直接的影響在于                            (  )

①充實(shí)了江南勞動(dòng)力  ②帶去了先進(jìn)的生產(chǎn)技術(shù)  ③導(dǎo)致南方人觀念更新  ④促進(jìn)了民族之間的融合

A.①②         B.②③         C.①④         D.①③

答案  A

試題詳情

2.(2007·江蘇)東晉南朝時(shí)期,江南經(jīng)濟(jì)迅速發(fā)展,乃至有“江南之為國盛矣”的贊嘆。該時(shí)期江南開發(fā)的主要因素不包括                                                  (  )

A.北方大量人口南遷                B.民族融合進(jìn)一步加強(qiáng)

C.統(tǒng)治者推行勸課農(nóng)桑等政策            D.農(nóng)產(chǎn)品商品化程度高

答案  D

試題詳情

1.下圖中,東晉南朝經(jīng)濟(jì)開發(fā)成就最突出的地區(qū)是                              (  )

A.①          B.②          C.③           D.④

答案  C

試題詳情

例1:定義在R上的非常數(shù)函數(shù)滿足:f (10+x)為偶函數(shù),且f (5-x) = f (5+x),則f (x)一定是(  ) (第十二屆希望杯高二 第二試題)

(A)是偶函數(shù),也是周期函數(shù)     (B)是偶函數(shù),但不是周期函數(shù)

(C)是奇函數(shù),也是周期函數(shù)     (D)是奇函數(shù),但不是周期函數(shù)

解:∵f (10+x)為偶函數(shù),∴f (10+x) = f (10-x).

∴f (x)有兩條對稱軸 x = 5與x =10 ,因此f (x)是以10為其一個(gè)周期的周期函數(shù), ∴x =0即y軸也是f (x)的對稱軸,因此f (x)還是一個(gè)偶函數(shù)。

故選(A)        

例2:設(shè)定義域?yàn)镽的函數(shù)y = f (x)、y = g(x)都有反函數(shù),并且f(x-1)和g-1(x-2)函數(shù)的圖像關(guān)于直線y = x對稱,若g(5) = 1999,那么f(4)=( )。

(A)   1999; (B)2000; (C)2001; (D)2002。

解:∵y = f(x-1)和y = g-1(x-2)函數(shù)的圖像關(guān)于直線y = x對稱,

∴y = g-1(x-2) 反函數(shù)是y = f(x-1),而y = g-1(x-2)的反函數(shù)是:y = 2 + g(x), ∴f(x-1) = 2 + g(x), ∴有f(5-1) = 2 + g(5)=2001

故f(4) = 2001,應(yīng)選(C)

例3.設(shè)f(x)是定義在R上的偶函數(shù),且f(1+x)= f(1-x),當(dāng)-1≤x≤0時(shí),

f (x) = -x,則f (8.6 ) = _________  (第八屆希望杯高二 第一試題)

解:∵f(x)是定義在R上的偶函數(shù)∴x = 0是y = f(x)對稱軸;

又∵f(1+x)= f(1-x) ∴x = 1也是y = f (x) 對稱軸。故y = f(x)是以2為周期的周期函數(shù),∴f (8.6 ) = f (8+0.6 ) = f (0.6 ) = f (-0.6 ) = 0.3

例4.函數(shù) y = sin (2x + )的圖像的一條對稱軸的方程是(  )(92全國高考理)  (A) x = -        (B) x = -    (C) x =       (D) x =

解:函數(shù) y = sin (2x + )的圖像的所有對稱軸的方程是2x +  = k+

∴x = ,顯然取k = 1時(shí)的對稱軸方程是x = -  故選(A)

例5. 設(shè)f(x)是定義在R上的奇函數(shù),且f(x+2)= -f(x),當(dāng)0≤x≤1時(shí),

f (x) = x,則f (7.5 ) = (  )

  (A)  0.5       (B)  -0.5        (C) 1.5          (D) -1.5

解:∵y = f (x)是定義在R上的奇函數(shù),∴點(diǎn)(0,0)是其對稱中心;

  又∵f (x+2 )= -f (x) = f (-x),即f (1+ x) = f (1-x), ∴直線x = 1是y = f (x) 對稱軸,故y = f (x)是周期為2的周期函數(shù)。

  ∴f (7.5 ) = f (8-0.5 ) = f (-0.5 ) = -f (0.5 ) =-0.5 故選(B)

試題詳情

函  數(shù)
對稱中心坐標(biāo)
對稱軸方程
y = sin x
( kπ, 0 )
x = kπ+π/2
y = cos x
( kπ+π/2 ,0 )
x = kπ
y = tan x
(kπ/2 ,0 )

注:①上表中k∈Z

②y = tan x的所有對稱中心坐標(biāo)應(yīng)該是(kπ/2 ,0 ),而在岑申、王而冶主編的浙江教育出版社出版的21世紀(jì)高中數(shù)學(xué)精編第一冊(下)及陳兆鎮(zhèn)主編的廣西師大出版社出版的高一數(shù)學(xué)新教案(修訂版)中都認(rèn)為y = tan x的所有對稱中心坐標(biāo)是( kπ, 0 ),這明顯是錯(cuò)的。

試題詳情

定理4. 函數(shù)y = f (x)與y = 2b-f (2a-x)的圖像關(guān)于點(diǎn)A (a ,b)成中心對稱。

定理5. ①函數(shù)y = f (x)與y = f (2a-x)的圖像關(guān)于直線x = a成軸對稱。

②函數(shù)y = f (x)與a-x = f (a-y)的圖像關(guān)于直線x +y = a成軸對稱。

③函數(shù)y = f (x)與x-a = f (y + a)的圖像關(guān)于直線x-y = a成軸對稱。

定理4與定理5中的①②證明留給讀者,現(xiàn)證定理5中的③

   設(shè)點(diǎn)P(x0 ,y0)是y = f (x)圖像上任一點(diǎn),則y0 = f (x0)。記點(diǎn)P( x ,y)關(guān)于直線x-y = a的軸對稱點(diǎn)為P(x1, y1),則x1 = a + y0 , y1 = x0-a ,∴x0 = a + y1 , y0= x1-a 代入y0 = f (x0)之中得x1-a = f (a + y1) ∴點(diǎn)P(x1, y1)在函數(shù)x-a = f (y + a)的圖像上。

同理可證:函數(shù)x-a = f (y + a)的圖像上任一點(diǎn)關(guān)于直線x-y = a的軸對稱點(diǎn)也在函數(shù)y = f (x)的圖像上。故定理5中的③成立。

推論:函數(shù)y = f (x)的圖像與x = f (y)的圖像關(guān)于直線x = y 成軸對稱。

試題詳情

定理1.函數(shù) y = f (x)的圖像關(guān)于點(diǎn)A (a ,b)對稱的充要條件是

      f (x) + f (2a-x) = 2b

證明:(必要性)設(shè)點(diǎn)P(x ,y)是y = f (x)圖像上任一點(diǎn),∵點(diǎn)P( x ,y)關(guān)于點(diǎn)A (a ,b)的對稱點(diǎn)P(2a-x,2b-y)也在y = f (x)圖像上,∴ 2b-y = f (2a-x)

即y + f (2a-x)=2b故f (x) + f (2a-x) = 2b,必要性得證。

(充分性)設(shè)點(diǎn)P(x0,y0)是y = f (x)圖像上任一點(diǎn),則y0 = f (x0)

∵ f (x) + f (2a-x) =2b∴f (x0) + f (2a-x0) =2b,即2b-y0 = f (2a-x0) 。

 故點(diǎn)P(2a-x0,2b-y0)也在y = f (x) 圖像上,而點(diǎn)P與點(diǎn)P關(guān)于點(diǎn)A (a ,b)對稱,充分性得征。

推論:函數(shù) y = f (x)的圖像關(guān)于原點(diǎn)O對稱的充要條件是f (x) + f (-x) = 0

定理2. 函數(shù) y = f (x)的圖像關(guān)于直線x = a對稱的充要條件是

  f (a +x) = f (a-x) 即f (x) = f (2a-x)  (證明留給讀者)

推論:函數(shù) y = f (x)的圖像關(guān)于y軸對稱的充要條件是f (x) = f (-x)

定理3. ①若函數(shù)y = f (x) 圖像同時(shí)關(guān)于點(diǎn)A (a ,c)和點(diǎn)B (b ,c)成中心對稱(a≠b),則y = f (x)是周期函數(shù),且2| a-b|是其一個(gè)周期。

           、谌艉瘮(shù)y = f (x) 圖像同時(shí)關(guān)于直線x = a 和直線x = b成軸對稱 (a≠b),則y = f (x)是周期函數(shù),且2| a-b|是其一個(gè)周期。

③若函數(shù)y = f (x)圖像既關(guān)于點(diǎn)A (a ,c) 成中心對稱又關(guān)于直線x =b成軸對稱(a≠b),則y = f (x)是周期函數(shù),且4| a-b|是其一個(gè)周期。

①②的證明留給讀者,以下給出③的證明:

∵函數(shù)y = f (x)圖像既關(guān)于點(diǎn)A (a ,c) 成中心對稱,

∴f (x) + f (2a-x) =2c,用2b-x代x得:

f (2b-x) + f [2a-(2b-x) ] =2c………………(*)

又∵函數(shù)y = f (x)圖像直線x =b成軸對稱,

∴ f (2b-x) = f (x)代入(*)得:

f (x) = 2c-f [2(a-b) + x]…………(**),用2(a-b)-x代x得

f [2 (a-b)+ x] = 2c-f [4(a-b) + x]代入(**)得:

f (x) = f [4(a-b) + x],故y = f (x)是周期函數(shù),且4| a-b|是其一個(gè)周期。

試題詳情

70.The underlined word “precautions” means ___________.

    A.special medicines to some diseases

    B.a(chǎn)greements signed by both sides

    C.things done in advance to prevent problems

    D.instructions on health problems by doctors

答案  66.A  67.C  68.D  69.B  70.C

試題詳情

69.We can learn from the text that ___________.

    A.Leanne is from Indonesia and knows very well about the coming trip

    B.the students are able to attend some lessons during their trip

    C.the students going on the trip will cost nothing

    D.the speaker is likely to come from the government

試題詳情


同步練習(xí)冊答案