例6.求證下列不等式
(1)
(2)
(3)
證:(1)
∴ 為上 ∴ 恒成立
∴
∴ 在上 ∴ 恒成立
(2)原式 令
∴ ∴
∴
(3)令
∴
∴
例5. 求下列函數(shù)單調(diào)區(qū)間
(1) (2)
(3) (4)
解:(1) 時(shí)
∴ ,
(2) ∴ ,
(3)
∴
∴ , ,
(4) 定義域?yàn)?/p>
例4.(1)求曲線在點(diǎn)(1,1)處的切線方程;
(2)運(yùn)動(dòng)曲線方程為,求t=3時(shí)的速度。
分析:根據(jù)導(dǎo)數(shù)的幾何意義及導(dǎo)數(shù)的物理意義可知,函數(shù)y=f(x)在處的導(dǎo)數(shù)就是曲線y=f(x)在點(diǎn)處的切線的斜率。瞬時(shí)速度是位移函數(shù)S(t)對(duì)時(shí)間的導(dǎo)數(shù)。
解:(1),
,即曲線在點(diǎn)(1,1)處的切線斜率k=0
因此曲線在(1,1)處的切線方程為y=1
(2)
。
例3.觀察,,,是否可判斷,可導(dǎo)的奇函數(shù)的導(dǎo)函數(shù)是偶函數(shù),可導(dǎo)的偶函數(shù)的導(dǎo)函數(shù)是奇函數(shù)。
解:若為偶函數(shù) 令
∴ 可導(dǎo)的偶函數(shù)的導(dǎo)函數(shù)是奇函數(shù)
另證:
∴ 可導(dǎo)的偶函數(shù)的導(dǎo)函數(shù)是奇函數(shù)
例2.已知f(x)在x=a處可導(dǎo),且f′(a)=b,求下列極限:
。1); (2)
分析:在導(dǎo)數(shù)定義中,增量△x的形式是多種多樣,但不論△x選擇哪種形式,△y也必須選擇相對(duì)應(yīng)的形式。利用函數(shù)f(x)在處可導(dǎo)的條件,可以將已給定的極限式恒等變形轉(zhuǎn)化為導(dǎo)數(shù)定義的結(jié)構(gòu)形式。
解:(1)
。2)
說明:只有深刻理解概念的本質(zhì),才能靈活應(yīng)用概念解題。解決這類問題的關(guān)鍵是等價(jià)變形,使極限式轉(zhuǎn)化為導(dǎo)數(shù)定義的結(jié)構(gòu)形式。
例1. 在處可導(dǎo),則
思路: 在處可導(dǎo),必連續(xù) ∴
∴
2.利用導(dǎo)數(shù)判別可導(dǎo)函數(shù)的極值的方法及求一些實(shí)際問題的最大值與最小值.
復(fù)合函數(shù)的求導(dǎo)法則是微積分中的重點(diǎn)與難點(diǎn)內(nèi)容。課本中先通過實(shí)例,引出復(fù)合函數(shù)的求導(dǎo)法則,接下來對(duì)法則進(jìn)行了證明。
3.要能正確求導(dǎo),必須做到以下兩點(diǎn):
(1)熟練掌握各基本初等函數(shù)的求導(dǎo)公式以及和、差、積、商的求導(dǎo)法則,復(fù)合函數(shù)的求導(dǎo)法則。
(2)對(duì)于一個(gè)復(fù)合函數(shù),一定要理清中間的復(fù)合關(guān)系,弄清各分解函數(shù)中應(yīng)對(duì)哪個(gè)變量求導(dǎo)。
4.求復(fù)合函數(shù)的導(dǎo)數(shù),一般按以下三個(gè)步驟進(jìn)行:
(1)適當(dāng)選定中間變量,正確分解復(fù)合關(guān)系;(2)分步求導(dǎo)(弄清每一步求導(dǎo)是哪個(gè)變量對(duì)哪個(gè)變量求導(dǎo));(3)把中間變量代回原自變量(一般是x)的函數(shù)。
也就是說,首先,選定中間變量,分解復(fù)合關(guān)系,說明函數(shù)關(guān)系y=f(μ),μ=f(x);然后將已知函數(shù)對(duì)中間變量求導(dǎo),中間變量對(duì)自變量求導(dǎo);最后求,并將中間變量代回為自變量的函數(shù)。整個(gè)過程可簡記為分解――求導(dǎo)――回代。熟練以后,可以省略中間過程。若遇多重復(fù)合,可以相應(yīng)地多次用中間變量。
1.導(dǎo)數(shù)概念的理解.
3.導(dǎo)數(shù)與解析幾何或函數(shù)圖象的混合問題是一種重要類型,也是高考中考察綜合能力的一個(gè)方向,應(yīng)引起注意。
2.關(guān)于函數(shù)特征,最值問題較多,所以有必要專項(xiàng)討論,導(dǎo)數(shù)法求最值要比初等方法快捷簡便。
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com