15.拋物線x2=4y上一點(diǎn)P(a,1)到焦點(diǎn)的距離是(  )
A.1B.2C.3D.4

分析 求出拋物線的焦點(diǎn)坐標(biāo),利用拋物線的定義轉(zhuǎn)化求解即可.

解答 解:拋物線x2=4y的焦點(diǎn)坐標(biāo)(0,1),準(zhǔn)線方程為:y=-1,
由拋物線的定義可得:
拋物線x2=4y上一點(diǎn)P(a,1)到焦點(diǎn)的距離是:2.
故選:B.

點(diǎn)評 本題考查拋物線的定義、簡單性質(zhì)的應(yīng)用,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若θ是第2象限角,則點(diǎn)(sin(cosθ),cos(sinθ))在第二象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知四邊形ABCD為平行四邊形,A(0,3),B(4,1),D為邊AB的垂直平分線與x軸的交點(diǎn).
(Ⅰ)求點(diǎn)C的坐標(biāo)
(Ⅱ)一條光線從點(diǎn)D射出,經(jīng)直線AB反射,反射光線經(jīng)過CD的中點(diǎn)E,求反射光線所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知隨機(jī)變量X是分布列如表,則E(2X+1)=( 。
 X 1 2
 P 0.3 0.7
A.4.4B.0.6C.0.3D.1.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知α,β是兩個(gè)不同的平面,m,n是兩條不同的直線,給出下列命題:
①若m⊥α,m?β,則α⊥β;
②若m⊥n,m⊥α,則n∥α;
③若m?α,n?β,α∥β,則m∥n;
④若m∥α,α⊥β,則m⊥β.
其中,正確的個(gè)數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.將函數(shù)f(x)=2cos(x-$\frac{π}{3}$)-1的圖象所有的點(diǎn)的橫坐標(biāo)縮短到原來的$\frac{1}{2}$倍(縱坐標(biāo)不變),再向右平移$\frac{π}{6}$個(gè)單位,得到函數(shù)y=g(x)的圖象,則圖象y=g(x)的一個(gè)對稱中心為( 。
A.($-\frac{π}{6}$,0)B.($-\frac{π}{12}$,-1)C.($\frac{π}{6}$,-1)D.($\frac{π}{12}$,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=tan(2x+$\frac{π}{3}$),則下列說法正確的是( 。
A.f(x)在定義域是增函數(shù)B.f(x)的對稱中心是($\frac{kπ}{4}$-$\frac{π}{6}$,0)(k∈Z)
C.f(x)是奇函數(shù)D.f(x)的對稱軸是x=$\frac{kπ}{2}$+$\frac{π}{12}$(k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.化簡f(α)=$\frac{sin(α+\frac{π}{2})cos(\frac{3π}{2}-α)tan(π-α)}{tan(α+π)sin(π-α)}$,若tanα=$\frac{1}{3}$,α∈(π,$\frac{3π}{2}$),求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若函數(shù)f(x)=|2x-2|-b有兩個(gè)零點(diǎn),則實(shí)數(shù)b的取值范圍是( 。
A.(-2,0)B.(-1,0)C.(0,1)D.(0,2)

查看答案和解析>>

同步練習(xí)冊答案