分析 在1到200這200個整數(shù)中既不是2的倍數(shù),又不是3的倍數(shù),也不是5的倍數(shù)的整數(shù)共有54個,根據(jù)集合元素card(A∪B∪C)=card(A)+card(B)+card(C)-card(A∩B)-card(A∩C)-card(B∩C)+card(A∩B∩C),可得結(jié)論.
解答 解:在1到200這200個整數(shù)中既不是2的倍數(shù),又不是3的倍數(shù),也不是5的倍數(shù)的整數(shù)共有54個,理由如下:
集合A表示1到200中是2的倍數(shù)的數(shù)組成的集合,
集合B表示1到200中是3的倍數(shù)的數(shù)組成的集合,
集合C表示1到200中是5的倍數(shù)的數(shù)組成的集合,
則card(A)=100,
card(B)=66,
card(C)=40,
card(A∩B)=33,
card(A∩C)=20,
card(B∩C)=13,
card(A∩B∩C)=6,
1到200中既不是2的倍數(shù),又不是3的倍數(shù),也不是5的倍數(shù)的整數(shù)為:[CU(A∪B∪C)],
則card[CU(A∪B∪C)]=200-[card(A)+card(B)+card(C)-card(A∩B)-card(A∩C)-card(B∩C)+card(A∩B∩C)]=54.
點評 本題考查的知識點是集合元素的個數(shù)判斷,難度中檔.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{2}$ | C. | $\frac{{\sqrt{11}}}{3}$ | D. | $\frac{{2\sqrt{5}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,1-ln2) | B. | (-∞,1-ln2] | C. | (1-ln2,+∞) | D. | [1-ln2,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -1 | B. | $\frac{1}{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{5}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com