1.若實數(shù)x、y滿足條件$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-2≥0}\\{x≤1}\end{array}\right.$,則log2(2x+y)的最大值為2.

分析 畫出滿足約束條件的可行域,先求出真數(shù)的最大值,進(jìn)而可得答案.

解答 解:滿足約束條件$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-2≥0}\\{x≤1}\end{array}\right.$,的可行域如下圖所示:
令U=2x+y,由$\left\{\begin{array}{l}{x=1}\\{x-y+1=0}\end{array}\right.$,可得A(1,2),直線U=2x+y經(jīng)過A時,U=2x+y取得最大值:4;
此時z=log2(2x+y)的最大值為log24=2,
故答案為:2.

點(diǎn)評 本題考查的知識點(diǎn)是線性規(guī)劃,對數(shù)函數(shù)的單調(diào)性,是對數(shù)函數(shù)與線性規(guī)劃的綜合考查,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)全集U={-2,-1,0,1,2,3},A={2,3},B={-1,0},則A∩(∁UB)=( 。
A.{0,2,3}B.{-2,1,2,3}C.{-1,0,2,3}D.{2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.?dāng)?shù)列1,$\frac{1}{1+2}$,$\frac{1}{1+2+3}$,…,$\frac{1}{1+2+3+…+n}$的前n項和為$\frac{9}{5}$,則正整數(shù)n的值為( 。
A.6B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.根據(jù)如圖的程序框圖,當(dāng)輸入x為2017時,輸出的y為28,則判斷框中的條件可以是( 。
A.x≥0?B.x≥1?C.x≥-1?D.x≥-3?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖,在正方體ABCD-A1B1C1D1中,棱AB的中點(diǎn)為P,若光線從點(diǎn)P出發(fā),依次經(jīng)三個側(cè)面BCC1B1,DCC1D1,ADD1A1反射后,落到側(cè)面ABB1A1(不包括邊界),則入射光線PQ與側(cè)面BCC1B1所成角的正切值的范圍是( 。
A.($\frac{3}{4}$,$\frac{5}{4}$)B.($\frac{2\sqrt{17}}{17}$,4)C.($\frac{\sqrt{5}}{5}$,$\frac{3}{2}$)D.($\frac{3\sqrt{5}}{10}$,$\frac{5}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.($\sqrt{x}$+3)($\sqrt{x}$-$\frac{2}{x}$)5的展開式中的常數(shù)項為40.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.理科競賽小組有9名女生、12名男生,從中隨機(jī)抽取一個容量為7的樣本進(jìn)行分析.
(Ⅰ)如果按照性別比例分層抽樣,可以得到多少個不同的樣本?(寫出算式即可)
(Ⅱ)如果隨機(jī)抽取的7名同學(xué)的物理、化學(xué)成績(單位:分)對應(yīng)如表:
 學(xué)生序號 1 2 3 4 5 6 7
 物理成績 65 70 75 81 85 87 93
 化學(xué)成績 72 68 80 85 90 86 91
規(guī)定85分以上(包括85份)為優(yōu)秀,從這7名同學(xué)中再抽取3名同學(xué),記這3名同學(xué)中物理和化學(xué)成績均為優(yōu)秀的人數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某項科研活動共進(jìn)行了5次試驗,其數(shù)據(jù)如表所示:
 特征量 第1次 第2次 第3次 第4次 第5次
 x 555559  551 563 552
 y 601605 597 599 598 
(Ⅰ)從5次特征量y的試驗數(shù)據(jù)中隨機(jī)地抽取兩個數(shù)據(jù),求至少有一個大于600的概率;
(Ⅱ)求特征量y關(guān)于x的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$;并預(yù)測當(dāng)特征量x為570時特征量y的值.
(附:回歸直線的斜率和截距的最小二乘法估計公式分別為$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)拋物線K:x2=2py(p>0),焦點(diǎn)為F,P是K上一點(diǎn),K在點(diǎn)P處的切線為l,d為F到l的距離,則(  )
A.$\fraciypzzzx{|PF|}$=pB.$\fraciuftlap{|PF{|}^{2}}$=pC.$\fracixubjng{|PF|}$=2pD.$\frac{vhjjmzn^{2}}{|PF|}$=$\frac{p}{2}$

查看答案和解析>>

同步練習(xí)冊答案