11.設(shè)拋物線K:x2=2py(p>0),焦點(diǎn)為F,P是K上一點(diǎn),K在點(diǎn)P處的切線為l,d為F到l的距離,則( 。
A.$\frac1t3i1ri{|PF|}$=pB.$\frachnghaji{|PF{|}^{2}}$=pC.$\fracwuxhxrs{|PF|}$=2pD.$\frac{bgqlzk0^{2}}{|PF|}$=$\frac{p}{2}$

分析 設(shè)P(x0,y0),則K在點(diǎn)P處的切線方程為l:y-y0=$\frac{{x}_{0}}{p}$(x-x0),再根據(jù)點(diǎn)到直線的距離公式,化簡(jiǎn)計(jì)算即可得到.

解答 解:設(shè)P(x0,y0),則K在點(diǎn)P處的切線方程為l:y-y0=$\frac{{x}_{0}}{p}$(x-x0),
則x02=2py0,得l:x0x-py-py0=0,
又F(0,$\frac{P}{2}$),
所以d=$\frac{|-\frac{{p}^{2}}{2}-p{y}_{0}|}{\sqrt{{x}_{0}^{2}+{p}^{2}}}$=$\frac{p({y}_{0}+\frac{p}{2})}{\sqrt{2p{y}_{0}+{p}^{2}}}$=$\frac{\sqrt{p}({y}_{0}+\frac{p}{2})}{\sqrt{2({y}_{0}+\frac{p}{2})}}$=$\sqrt{\frac{p}{2}}$•$\sqrt{|PF|}$⇒$\frac{v0plehs^{2}}{|PF|}$=$\frac{P}{2}$,
故選:D

點(diǎn)評(píng) 本題主要考查了拋物線的定義的運(yùn)用.考查了學(xué)生對(duì)拋物線基礎(chǔ)知識(shí)的掌握.屬中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.若實(shí)數(shù)x、y滿足條件$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-2≥0}\\{x≤1}\end{array}\right.$,則log2(2x+y)的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.在一個(gè)容量為5的樣本中,數(shù)據(jù)均為整數(shù),已測(cè)出其平均數(shù)為10,但墨水污損了兩個(gè)數(shù)據(jù),其中一個(gè)數(shù)據(jù)的十位數(shù)字1未污損,即9,10,11,,那么這組數(shù)據(jù)的方差S2可能的最大值是$\frac{164}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.設(shè)m,n∈R,若直線(m+1)x+(n+1)y-4=0與圓(x-2)2+(y-2)2=4相切,則m+n的取值范圍是x≥2+2$\sqrt{2}$或x≤2-2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知直線l與平面α相交但不垂直,m為空間內(nèi)一條直線,則下列結(jié)論一定不成立的是( 。
A.m⊥l,m?αB.m⊥l,m∥αC.m∥l,m∩α≠∅D.m⊥l,m⊥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=1+cosα}\\{y=sinα}\end{array}\right.$(α為參數(shù),-π<α<0),曲線C2的參數(shù)方程為$\left\{\begin{array}{l}{x=\frac{1}{2}-\frac{\sqrt{3}}{2}t}\\{y=5+\sqrt{3}t}\end{array}\right.$(t為參數(shù)),以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線C1的極坐標(biāo)方程和曲線C2的普通方程;
(2)射線θ=-$\frac{π}{4}$與曲線C1的交點(diǎn)為P,與曲線C2的交點(diǎn)為Q,求線段PQ的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.雙曲線$\frac{y^2}{3}-{x^2}=1$的焦點(diǎn)坐標(biāo)是( 。
A.$(±\sqrt{2},0)$B.$(0,±\sqrt{2})$C.(0,±2)D.(±2,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知向量$\overrightarrow{a}$=(0,1,1),$\overrightarrow$=(1,2,0),則同時(shí)與$\overrightarrow{a}$,$\overrightarrow$垂直的單位向量$\overrightarrow{e}$=( 。
A.$(-\frac{{\sqrt{6}}}{3},\frac{{\sqrt{6}}}{6},-\frac{{\sqrt{6}}}{6})$B.$(\frac{{\sqrt{6}}}{3},-\frac{{\sqrt{6}}}{6},-\frac{{\sqrt{6}}}{6})$或$(\frac{{\sqrt{6}}}{3},-\frac{{\sqrt{6}}}{6},\frac{{\sqrt{6}}}{6})$
C.$(\frac{{\sqrt{6}}}{3},-\frac{{\sqrt{6}}}{6},\frac{{\sqrt{6}}}{6})$D.$(-\frac{{\sqrt{6}}}{3},\frac{{\sqrt{6}}}{6},-\frac{{\sqrt{6}}}{6})$或$(\frac{{\sqrt{6}}}{3},-\frac{{\sqrt{6}}}{6},\frac{{\sqrt{6}}}{6})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知集合M={x|x2-x-2=0},N={-1,0},則M∩N=(  )
A.{-1,0,2}B.{-1}C.{0}D.

查看答案和解析>>

同步練習(xí)冊(cè)答案