17.已知橢圓過點P(1,$\frac{{\sqrt{3}}}{2}$)和Q(2,0),則橢圓的方程為( 。
A.$\frac{x^2}{4}+\frac{y^2}{2}$=1B.$\frac{x^2}{4}+{y^2}$=1C.$\frac{x^2}{4}+\frac{y^2}{3}$=1D.$\frac{y^2}{4}+{x^2}$=1

分析 設(shè)出橢圓方程,利用已知條件,代入求解即可.

解答 解:設(shè)橢圓方程為:mx2+ny2=1,橢圓過點P(1,$\frac{{\sqrt{3}}}{2}$)和Q(2,0),
可得:m+$\frac{3}{4}$n=1,4m=1,解得m=$\frac{1}{4}$,n=1.
所以所求橢圓方程為:$\frac{x^2}{4}+{y^2}$=1.
故選:B.

點評 本題考查橢圓的方程的求法,橢圓的簡單性質(zhì)在的應(yīng)用,可以判斷橢圓的焦點坐標所在軸,設(shè)出橢圓方程求解.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

14.不等式組$\left\{\begin{array}{l}{2x-y+1≥0}\\{x-2y+2≤0}\\{x+y-4≤0}\end{array}\right.$的解集記作D,實數(shù)x,y滿足如下兩個條件:①?(x,y)∈D,y≥ax;②?(x,y)∈D,x-y≤a.則實數(shù)a的取值范圍為[-2,1].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.(1)曲線C:$\frac{x^2}{4-k}-\frac{y^2}{1-k}=1$表示焦點在x軸上的橢圓,則k的范圍;
(2)求以F1(-2,0),F(xiàn)2(2,0)為焦點,且過點$M(\sqrt{6},2)$的橢圓標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.雙曲線4y2-25x2=100的焦點坐標是( 。
A.(-5,0),(5,0)B.(0,-5),(0,5)C.$(-\sqrt{29},0)$,$(\sqrt{29},0)$D.$(0,-\sqrt{29})$,$(0,\sqrt{29})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.在直角三角形ABC中,∠C=90°,AB=4,AC=2,若$\overrightarrow{AD}=\frac{3}{2}\overrightarrow{AB},則\overrightarrow{CD}•\overrightarrow{CB}$=18.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知數(shù)列{an}為等比數(shù)列,Sn是它的前n項和,設(shè)Tn=S1+S2+…+Sn,若a2•a3=2a1,且a4與2a7的等差中項為$\frac{5}{4}$,則T4=98.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.在產(chǎn)品質(zhì)量檢驗時,常從產(chǎn)品中抽出一部分進行檢查.現(xiàn)在從98件正品和2件次品共100件產(chǎn)品中,任意抽出3件檢查.
(1)共有多少種不同的抽法?
(2)恰好有一件是次品的抽法有多少種?
(3)至少有一件是次品的抽法有多少種?
(4)恰好有一件是次品,再把抽出的3件產(chǎn)品放在展臺上,排成一排進行對比展覽,共有多少種不同的排法?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.兩圓x2+y2+4x-4y=0與x2+y2+2x-12=0的公共弦長等于( 。
A.4B.2$\sqrt{3}$C.3$\sqrt{2}$D.4$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知曲線C由拋物線y2=8x及其準線組成,則曲線C與圓(x+3)2+y2=16的交點的個數(shù)為4.

查看答案和解析>>

同步練習冊答案