20.已知命題P:?x∈R,x2+2x-1≥0,則¬P是(  )
A.?x0∈R,x02+2x0-1<0B.?x∈R,x2+2x-1≤0
C.?x0∈R,x02+2x0-1≥0D.?x∈R,x2+2x-1<0

分析 “全稱(chēng)命題”的否定一定是“特稱(chēng)命題”,寫(xiě)出結(jié)果即可.

解答 解:∵“全稱(chēng)命題”的否定一定是“特稱(chēng)命題”,
∴命題P:?x∈R,x2+2x-1≥0,則¬P是?x0∈R,x02+2x0-1<0,
故選:A

點(diǎn)評(píng) 本題考查命題的否定.“全稱(chēng)量詞”與“存在量詞”正好構(gòu)成了意義相反的表述.如“對(duì)所有的…都成立”與“至少有一個(gè)…不成立”;“都是”與“不都是”等,所以“全稱(chēng)命題”的否定一定是“存在性命題”,“存在性命題”的否定一定是“全稱(chēng)命題”.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知點(diǎn)P是拋物線y2=4x上的一點(diǎn),拋物線的焦點(diǎn)為F,若|PF|=5,直線PF的斜率為k,則|k|=$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知點(diǎn)P(3cosθ,sinθ)在直線l:x+3y=1,則sin2θ=-$\frac{8}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知集合A={x|0≤x≤5},B={x∈N*|x-1≤2},則A∩B=( 。
A.{x|0≤x≤3}B.{1,2,3}C.{0,1,2,3}D.{x|1≤x≤3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知$\frac{1}{sinφ}$+$\frac{1}{cosφ}$=2$\sqrt{2}$,若φ∈(0,$\frac{π}{2}$),則${∫}_{-1}^{tanφ}$(x2-2x)dx=( 。
A.$\frac{1}{3}$B.-$\frac{1}{3}$C.$\frac{2}{3}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.某市從參加廣場(chǎng)活動(dòng)的人員中隨機(jī)抽取了1000名,得到如下表:
市民參加廣場(chǎng)活動(dòng)項(xiàng)目與性別列聯(lián)表
 廣場(chǎng)舞球、棋、牌總計(jì)
100200300
300400700
總計(jì)4006001000
(Ⅰ)能否有99.5%把握認(rèn)為市民參加廣場(chǎng)活動(dòng)的項(xiàng)目與性別有關(guān)?
(Ⅱ)以性別為標(biāo)準(zhǔn),用分層抽樣的方法在跳廣場(chǎng)舞的人員中抽取4人,再在這4人中隨機(jī)確定兩名做廣場(chǎng)舞管理,求這兩名管理是一男一女的概率.
附   參考公式和K2檢驗(yàn)臨界值表:
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d,
P(K2≥k 0.15 0.10 0.05 0.025 0.010 0.005 0.001
 k 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.等差數(shù)列3,7,11…的公差是4,通項(xiàng)公式為4n-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知遞增的等比數(shù)列{an}的公比為q,其前n項(xiàng)和Sn<0,則( 。
A.a1<0,0<q<1B.a1<0,q>1C.a1>0,0<q<1D.a1>0,q>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)$f(x)=3lnx-\frac{1}{2}{x^2}+x$,g(x)=3x+a.
(Ⅰ)若f(x)與g(x)相切,求a的值;
(Ⅱ)當(dāng)$a=\frac{5}{2}$時(shí),P(x1,y1)為f(x)上一點(diǎn),Q(x2,y2)為g(x)上一點(diǎn),求|PQ|的最小值;
(Ⅲ)?x0>0,使f(x0)>g(x0)成立,求參數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案