分析 (1)把原不等式去掉絕對(duì)值,轉(zhuǎn)化為與之等價(jià)的三個(gè)不等式組,分別求得每個(gè)不等式組的解集,再取并集,即得所求.
(2)利用分段函數(shù)化簡(jiǎn)f(x)的解析式,利用單調(diào)性求得它的最小值.
解答 解:(1)∵函數(shù)f(x)=|2x-1|-|x-4|,由不等式f(x)>2,可得$\left\{\begin{array}{l}{x<\frac{1}{2}}\\{1-2x-(4-x)>2}\end{array}\right.$①,或$\left\{\begin{array}{l}{\frac{1}{2}≤x≤4}\\{2x-1-(4-x)>2}\end{array}\right.$②,或$\left\{\begin{array}{l}{x>4}\\{2x-1-(x-4)>2}\end{array}\right.$.
解①求得x<-5,解②求得$\frac{7}{3}$<x≤4,解③求得x>4,
綜上,不等式的解集為{x|x<-5,或x>$\frac{7}{3}$}.
(2)函數(shù)f(x)=|2x-1|-|x-4|=$\left\{\begin{array}{l}{-x-3,x<\frac{1}{2}}\\{3x-5,\frac{1}{2}≤x≤4}\\{x+3,x>4}\end{array}\right.$,故當(dāng)x=$\frac{1}{2}$時(shí),函數(shù)f(x)取得最小值為-$\frac{7}{2}$.
點(diǎn)評(píng) 本題主要考查絕對(duì)值不等式的解法,帶有絕對(duì)值的函數(shù),求函數(shù)的最小值,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 2$\sqrt{3}$ | C. | $\frac{2\sqrt{6}}{3}$ | D. | $\sqrt{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1:2 | B. | 1:4 | C. | 1:6 | D. | 1:8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
$\overline{x}$ | $\overline{y}$ | $\sum_{i=1}^{6}({x}_{i}-\overline{x})^{2}$ | $\sum_{i=1}^{6}({x}_{i}-\overline{x})({y}_{i}-\overline{y})$ |
6 | 500 | 20 | 1300 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com