13.在等差數(shù)列{an}中,2a7=a9+7,則數(shù)列{an}的前9項和S9=( 。
A.21B.35C.63D.126

分析 由已知得a1+4d=a5=7,從而利用數(shù)列{an}的前9項和S9=$\frac{9}{2}({a}_{1}+{a}_{9})=9{a}_{5}$,能求出結(jié)果.

解答 解:∵在等差數(shù)列{an}中,2a7=a9+7,
∴2(a1+6d)=a1+8d+7,
∴a1+4d=a5=7,
∴數(shù)列{an}的前9項和S9=$\frac{9}{2}({a}_{1}+{a}_{9})=9{a}_{5}$=63.
故選:C.

點評 本題考查等差數(shù)列的前9項和的求法,是基礎(chǔ)題,解題時要認真審題,注意等差數(shù)列的性質(zhì)的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

3.($\frac{x}{y}$-$\frac{y}{\sqrt{x}}$)8的展開式中x2的系數(shù)為70.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.持續(xù)性的霧霾天氣嚴重威脅著人們的身體健康,汽車排放的尾氣是造成霧霾天氣的重要因素之一.為了貫徹落實國務院關(guān)于培育戰(zhàn)略性新興產(chǎn)業(yè)和加強節(jié)能減排工作的部署和要求,中央財政安排專項資金支持開展私人購買新能源汽車補貼試點.2017年國家又出臺了調(diào)整新能源汽車推廣應用財政補貼的新政策,其中新能源乘用車推廣應用補貼標準如表:
某課題組從汽車市場上隨機選取了20輛純電動乘用車,根據(jù)其續(xù)駛里程R(單詞充電后能行駛的最大里程,R∈[100,300])進行如下分組:第1組[100,150),第2組[150,200),第3組[200,250),第4組[250,300],制成如圖所示的頻率分布直方圖.已知第1組與第3組的頻率之比為1:4,第2組的頻數(shù)為7.
 純電動續(xù)駛里程R(公里)100≤R<150  150≤R<250R>250 
 補貼標準(萬元/輛) 23.6 44 
(1)請根據(jù)頻率分布直方圖統(tǒng)計這20輛純電動乘用車的平均續(xù)駛里程;
(2)若以頻率作為概率,設(shè)ξ為購買一輛純電動乘用車獲得的補貼,求ξ的分布列和數(shù)學期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=lnx-$\frac{a(x-1)}{x+2}$.
(1)若函數(shù)f(x)在定義域內(nèi)不單調(diào),求實數(shù)a的取值范圍;
(2)若函數(shù)f(x)在區(qū)間(0,1]內(nèi)單調(diào)遞增,求實數(shù)a的取值范圍;
(3)若x1、x2∈R+,且x1≤x2,求證:(lnx1-lnx2)(x1+2x2)≤3(x1-x2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.現(xiàn)有$\frac{n(n+1)}{2}$(n≥2,n∈N*)個給定的不同的數(shù)隨機排成一個下圖所示的三角形數(shù)陣:

設(shè)Mk是第k行中的最大數(shù),其中1≤k≤n,k∈N*.記M1<M2<…<Mn的概率為pn
(1)求p2的值;
(2)證明:pn>$\frac{{C}_{n+1}^{2}}{(n+1)!}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知f(x)=$\left\{\begin{array}{l}{\frac{x}{{x}^{2}+1},x≥0}\\{-\frac{1}{x},x<0}\end{array}\right.$,若函數(shù)g(x)=f(x)-t有三個不同的零點x1,x2,x3(x1<x2<x3),則
-$\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}$的取值范圍是$(\frac{5}{2},+∞)$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知數(shù)列{an}的前n項和為Sn,且Sn=1-an,n∈N*,令bn=nan,記{bn}的前n項和為Tn,若不等式(-1)nλ<Tn+bn對任意正整數(shù)n都成立,則實數(shù)λ的取值范圍為$(-1,\frac{3}{2})$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知f(x)=|x-1|+|x+2|.
(1)若不等式f(x)>a2對任意實數(shù)x恒成立,求實數(shù)a的取值的集合T;
(Ⅱ)設(shè)m、n∈T,證明:$\sqrt{3}$|m+n|<|mn+3|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知拋物線的準線方程是x=$\frac{1}{2}$,則其標準方程是y2=-2x..

查看答案和解析>>

同步練習冊答案